화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.115, No.35, 10113-10121, 2011
Energy and Lifetime of Temporary Anion States of Uracil by Stabilization Method
To investigate the temporary anion states of uracil, density functional theory with asymptotically corrected potentials is adopted. The stabilized Koopmans' theorem and stabilized Koopmans-based approximation are used in conjunction with an analytic continuation procedure to calculate its resonance energies and lifetimes. Results indicate the presence of several low-lying pi* and sigma* temporary anion states of uracil. The characteristics of these resonance orbitals are also analyzed. By comparing them with the experimental values and theoretical calculations, it is believed that the stabilization approach can provide more information on the resonance states.