화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.115, No.17, 4231-4240, 2011
Time-Resolved Gas-Phase Kinetic, Quantum Chemical, and RRKM Studies of Reactions of Silylene with Alcohols
Time-resolved kinetic studies of silylene, SiH(2), generated by laser flash photolysis of 1-silacyclopent-3-ene and phenylsilane, have been carried out to obtain rate constants for its bimolecular reactions with methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-butanol. The reactions were studied in the gas phase over the pressure range 1-100 Torr in SF(6) bath gas, at room temperature. In the study with methanol several buffer gases were used. All five reactions showed pressure dependences characteristic of third body assisted association reactions. The rate constant pressure dependences were modeled using RRKM theory, based on E(0) values of the association complexes obtained by ab initio calculation (G3 level). Transition state models were adjusted to fit experimental fall-off curves and extrapolated to obtain k(infinity) values in the range (1.9-4.5) x 10(-10) cm(3) molecule(-1) s(-1). These numbers, corresponding to the true bimolecular rate constants, indicate efficiencies of between 16% and 67% of the collision rates for these reactions. In the reaction of SiH(2) + MeOH there is a small kinetic component to the rate which is second order in MeOH (at low total pressures). This suggests an additional catalyzed reaction pathway, which is supported by the ab initio calculations. These calculations have been used to define specific MeOH-for-H(2)O substitution effects on this catalytic pathway. Where possible our experimental and theoretical results are compared with those of previous studies.