Journal of Physical Chemistry A, Vol.115, No.16, 3746-3754, 2011
Solvent-Controlled Electron Transfer in Crystal Violet Lactone
Steady-state and picosecond time-resolved emission experiments are used to examine the excited; state charge transfer reaction of crystal violet lactone (CVL) in aprotic solvents. Solvatochromic analysis using a dielectric continuum model suggests dip dipole moments of 9-12 D for the initially excited (LE) stag and similar to 24 D for the charge-transfer (CT) state. Intensities of steady-state emission as well as kinetic data provide free energies for the LE -> CT reaction that range from +12 kJ/mol in nonpolar solvents to -10 kJ/mol in highly polar solvent's at 25 degrees C. Reaction rates constants, which lie in the range of 10-100 ns(-1) in most solvents, depend on both solvent polarity and solvent friction. In highly polar solvents, rates are correlated to solvation times in a manner that indicates that the reaction is a solvent-controlled electron transfer on an adiabatic potential surface having a modest barrier.