화학공학소재연구정보센터
Journal of Petroleum Geology, Vol.32, No.4, 313-325, 2009
SHALLOW-MARINE MICROPOROUS CARBONATE RESERVOIR ROCKS IN THE MIDDLE EAST: RELATIONSHIP WITH SEAWATER Mg/Ca RATIO AND EUSTATIC SEA LEVEL
An inventory of carbonate formations in the Middle East was compiled for three geological time intervals characterised by different seawater chemistries: the Late Carboniferous to Triassic (aragonite seas); the Cretaceous (calcite seas); and the Cenozoic (transitional from calcite to aragonite seas). For each time interval, carbonate formations described as microporous have been listed. During the Cretaceous calcite sea, eleven microporous carbonate formations were deposited in the Middle East. However, no microporous carbonates were formed during the Late Carboniferous to Triassic, a time of aragonite seas. During the Cenozoic, four of the five microporous carbonate formations recorded were deposited before the transition from calcite to aragonite seas. Thus, these shallow-marine microporous carbonates appear to have developed from precursor muds which were mainly composed of low-Mg calcite crystals. Moreover, during the Cretaceous and the Cenozoic, microporous carbonate formations in the Middle East were generally associated with major transgressions and highstands of relative sea level. The relatively high stability of low-Mg calcite muds may explain why shallow-marine microporous carbonates formed during time intervals with calcite seas. In contrast to muds composed of aragonite or high-Mg calcite crystals, the original microfabric (including intercrystalline microporosity) of low-Mg calcite muds can partly survive moderate diagenesis.