화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.115, No.5, 1021-1031, 2011
Dynamics of the Water Hydrogen Bond Network at Ionic, Nonionic, and Hydrophobic Interfaces in Nanopores and Reverse Micelles
The effects of water confinement on hydrogen bond dynamics and hydrogen bond exchange have been analyzed by molecular dynamics simulations for a series of different sizes of spherical nanopores of ionic, nonionic, and hydrophobic interfaces. We have calculated translational diffusion residence times, orientational decay time constants, the infrared spectra, correlation functions describing the hydrogen bond network, the hydrogen bond exchange time and rate constant, and ensemble averages of the hydrogen bond exchange reaction coordinate. We focus on the interfacial layer and bulklike interior of these small water containing nanostructures. Our results indicate a universal slowdown in rotational and hydrogen bond dynamics at the interface relative to bulk water. The interiors of nanopores with highly charged interfaces undergo qualitatively different dynamics than those in other nanopores. The rotational jump hydrogen bond exchange mechanism is shown to be robust and universal, even for this variety of interfaces. The implications of these results are discussed in terms of the role of confinement vs interface structure on water dynamics in nanopores.