화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.114, No.50, 16773-16782, 2010
Forster Resonance Energy Transfer Evidence for Lysozyme Oligomerization in Lipid Environment
Intermolecular time-resolved and single-molecule Forster resonance energy transfer (FRET) have been applied to detect quantitatively the aggregation of polycationic protein lysozyme (Lz) in the presence of lipid vesicles composed of phosphatidylcholine (PC) and its mixture with 5, 10, 20, or 40 mol % of phosphatidylglycerol (PG) (PG5, PG10, PG20, or PG40, respectively). Upon binding to PC, PG5, or PG10 model membranes, Lz was found to retain its native monomeric conformation, while increasing content of anionic lipid up to 20 or 40 mol To resulted in the formation of Lz aggregates. The structural parameters of protein self-association (the degree of oligomerization, the distance between the monomers in protein assembly, and the fraction of donors present in oligomers) have been derived. The crucial role of the factors such as lateral density of the adsorbed protein and electrostatic and hydrophobic Lz-lipid interactions in controlling the protein self-association behavior has been proposed.