화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.114, No.46, 15362-15369, 2010
On the Origin of Fluorescence in Bacteriophytochrome Infrared Fluorescent Proteins
Tsien et al. (Science, 2009, 324, 804-807) recently reported the creation of the first infrared fluorescent protein (IFP). It was engineered from bacterial phytochrome by removing the PHY and histidine kinase-related domains, by optimizing the protein to prevent dimerization, and by limiting the biliverdins conformational freedom, especially around its D ring. We have used database analyses and molecular dynamics simulations with freely rotating chromophoric dihedrals in order to model the dihedral freedom available to the biliverdin D ring in the excited state and to show that the tetrapyrrole ligands in phytochromes are flexible and can adopt many conformations; however, their conformational space is limited/defined by the chemospatial characteristics of the protein cavity. Our simulations confirm that the reduced accessibility to conformations geared to an excited state proton transfer may be responsible for the fluorescence in IFP, just as has been suggested by Kennis et al. (Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 9170-9175) for fluorescent bacteriophytochrome from Rhodopseudomonas palustris.