- Previous Article
- Next Article
- Table of Contents
Journal of Physical Chemistry B, Vol.114, No.30, 9721-9728, 2010
Normal and Lateral Interactions between Thermosensitive Nanoparticle Monolayers in Water
Static and dynamic interaction forces between two thermosensitive polymeric nanoparticle monolayers grafted onto mica surfaces and immersed in water were studied using a surface forces apparatus. The polymeric nanoparticles (NPs) were made of N,N-diethylacrylamide and had a hydrodynamic diameter of ca. 780 nm at 20 degrees C in aqueous suspension. They were irreversibly grafted onto chemically modified mica surfaces at a constant surface coverage of 2.6 NPs/mu m(2). The measured normal forces between two opposing NP monolayers were found to be strongly dependent on the temperature. At temperatures lower than the lower critical solution temperature (LCST), the grafted NPs were swollen, and the normal interaction forces between the two NP monolayers were repulsive. Above the LCST, the NPs collapsed, and attractive forces between the NP layers were measured. The swollen NPs were found to exhibit very low friction forces compared to the collapsed ones. The effect of the sliding velocity on the shear stress was investigated, and the results are in agreement with the so-called adhesive friction model developed for rubber friction. Our results suggest that the water content in the contact area and the interdiffusion of polymer chains are important parameters in determining the friction between polymer-bearing surfaces.