화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.23, No.4, 399-404, August, 2012
효소 당화효율 증진을 위한 왕겨의 전처리 방법 연구
Study on the Pretreatment of Rice Hull to Enhance Enzymatic Saccharification Efficiency
E-mail:
초록
비식량 농업부산물인 왕겨로부터 에탄올 생산을 위한 효율적인 바이오매스 전처리 방법을 탐색하였다. 고온ㆍ고압 조건의 회분식 반응기에서 알칼리 용매는 암모니아와 가성소다, 산 용매는 희황산을 사용하였다. 가성소다 용액 처리 후 희황산 용액으로 복합처리한 시료의 효소 당화효율이 82.8%로 가장 높게 나타났고 이때 약 94.7%의 회분 성분 제거율을 보였다. 전처리 왕겨 시료의 효소 당화효율과 회분 성분 제거율 추세가 거의 비슷하게 나타나 왕겨의 효소 당화 최대 저해요인이 회분(규산염) 성분임을 알 수 있었다. 따라서 규산염 함량이 높은 바이오매스는 고온ㆍ고압 조건하에서 가성소다-희황산 복합 처리법을 적용하는 것이 효소 당화효율 증진에 매우 유리함을 확인하였다.
The objective of this study was to investigate the efficient pretreatment method for bioethanol production from rice hull. Ammonia and sodium hydroxide as an alkaline solution and dilute sulfuric acid as an acidic solution were used in a batch reactor under high-temperature and high-pressure conditions. The highest enzymatic saccharification efficiency of 82.8% and ash removal rate of 94.7% were obtained in the dilute sulfuric acid treated sample after the sodium hydroxide solution treatment. The enzymatic saccharification efficiencies and ash removals of pretreated rice hull samples have very similar variation tendency. This means that the maximum obstructive factor for the enzymatic saccharification of rice hull is the ash (silicate) content in biomass. The findings suggest that the combined sodium hydroxide-dilute sulfuric acid treatment system under high-temperature and high-pressure conditions is a promising pretreatment method to enhance the enzymatic saccharification of the silica-rich biomass.
  1. Park SJ, Kim MH, Shin HM, J. of Biosystems Eng., 30, 229 (2005)
  2. Statics Korea Web site, http://kostat.go.kr/portal/korea/kor_nw/2/1/index.board?bmode=read&aSeq=252261.
  3. Siminsori Web site, http://pdf.siminsori.com/550/55008.pdf.
  4. Agrinet Web site, http://agrinet.co.kr/news/news_view.asp?idx=954 16&category1=농산&main_link=1.
  5. Chosun Ilbo Web site, http://news.chosun.com/site/data/html_dir/2009/11/18/2009111800103.html.
  6. Financial Shinmum Web site, http://www.efnews.co.kr/sub_read.html?uid=26731.
  7. The Korean Institute of Chemical Engineers, Energy Engineering,2, Kyobo Press, Seoul (1996)
  8. Sakanishi K, Sawayama S, Endo T, Minowa T, Thoroughly Easy Book for Bioethanol, 10, The Nikkan Kogyo Shimbun, Tokyo (2009)
  9. Chung CH, Korean J. Biotechnol. Bioeng., 23, 1 (2008)
  10. Hayes DJ, Catal. Today., 145, 138 (2009)
  11. Song YS, Jun HJ, Jung BG, Park WK, Lee KS, Kwak HK, Yoon JH, Lee CS, Yeon BY, Kim PJ, Yoon YS, Korean J. Soil Sci. Fert., 40, 354 (2007)
  12. Chun HJ, Kim KS, Sung BN, Cho BH, Encyclopaedia Physica-Chimica, 11, Bopkyong Pub., Seoul (2001)
  13. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, Determination of Structural Carbohydrates and Lignin in Biomass, 4, National Renewable Energy Laboratory, Golden, CO. (2008)
  14. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Determination of Ash in Biomass, 4, National Renewable Energy Laboratory, Golden, CO. (2008)
  15. Zhu L, O'Dwyer JP, Chang VS, Granda CB, Holtzapple MT, Bioresour. Technol., 99(9), 3817 (2008)
  16. Selig M, Weiss N, Ji Y, Enzymatic Saccharification of Lignocellulosic Biomass, 4, National Renewable Energy Laboratory, Golden, CO. (2008)
  17. Shackley S, Carter S, Knowles T, Middelink E, Haefele S, Sohi S, Cross A, Haszeldine S, Energy Policy., 42, 49 (2012)