Polymer(Korea), Vol.36, No.4, 448-454, July, 2012
6FDA-BAPP 폴리이미드 열축합 반응에서의 잔류용매에 따른 이미드화거동 연구
Analysis of Thermal Imidization Kinetics of 6FDA-BAPP Polyimide in Relation with Solvent Evaporation
E-mail:
초록
폴리아믹산(poly(amic acid), PAA)은 불소치환 단량체인 4,4'-(hexafluoroisopropylidene)diphthalic anhydride (6FDA)와 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluropropane(BAPP)의 조성으로 N,N'-dimethylacetamide(DMAc) 용매에서 반응을 하여 얻어졌으며, 폴리이미드(polyimide, PI) 필름은 PAA을 각각 다른 온도에서 열처리하여 얻었다. 제조된 필름을 얻기 위해 80-230 ℃ 까지 열처리를 하였으며, 용제 증발에 따른 이미드화도 변화를 알아보기 위해서 폴리아믹산 용액을 얻은 후 열중량 분석기(thermogravimetric analysis, TGA)를 통하여 시간과 온도에 따른 용제 증발 정도를 측정하였다. 이에 따른 이미드화 지수는 적외선 분광분석기(fourier transform infrared spectroscopy, FTIR) 스펙트럼을 통해 확인하였다. 시간과 온도에 따른 이미드화도를 통해 용매가 빠르게 증발하지만 용매가 잔류하고 있는 반응의 초기에 이미드화가 빠르게 일어나는 것을 확인하였고, 시간이 흘러 용매의 증발 정도가 줄어들고, 잔류용매가 사라지는 시점에서의 이미드화 지수는 일정하게 나타나는 것을 확인하였다. 이미드화는 온도가 증가함에 따라 진행되나 반응 온도가 200 ℃ 이상으로 과도하게 높은 경우에는 용매가 남아 있지 않아 반응시간을 증가시켜도 이미드화 지수가 오히려 감소하는 현상을 보였다.
A poly(amic acid) (PAA) was prepared by reaction of 4,4’-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluropropane (BAPP) in N,N-dimethylacetamide (DMAc). The cast films of the synthesized PAA were thermally treated at different temperatures to create polyimide (PI) films. The heat treatment temperature varied between 80 and 230 ℃ to investigate the imidization index in relation with the solvent evaporation
rates. The progress of PAA imidization was examined using a thermogravimetric analyzer (TGA) and a Fourier transform infrared spectroscope (FTIR) at various time and temperature. The experimental results showed that the imidization index was fast at the initial stage in the presence of solvent, DMAc, reaching the final imidization. When the imidization temperature is high over 200 ℃, the imidization index decreased because the solvent was evaporated too fast.
- Chung CL, Hsiao SH, Polymer, 49(10), 2476 (2008)
- Wang GP, Chang TC, Hong YS, Chiu YS, Polymer, 43(8), 2191 (2002)
- Chang JH, Park KM, Lee SM, Oh JB, J. Polym. Sci. B: Polym. Phys., 38(19), 2537 (2000)
- Yang KS, Edie DD, Lim DY, Kim YM, Choi YO, Carbon., 41, 2039 (2003)
- Wang HW, Dong RX, Chu HC, Chang KC, Lee WC, Mater. Chem. Phys., 94(1), 42 (2005)
- Jang W, Shin D, Choi S, Park S, Han H, Polymer, 48(7), 2130 (2007)
- He JH, Horie K, Yokota R, He FF, Polymer, 42(9), 4063 (2001)
- Choi IH, Chang JH, Polym. Adv. Technol., 20, 1 (2009)
- So YH, Heeschen JP, J. Org. Chem., 62, 3552 (1997)
- Ju CH, Kim JC, Chang JH, J. Appl. Polym. Sci., 106(6), 4192 (2007)
- Ge Z, Fan L, Yang S, Eur. Polym. J., 44, 1252 (2008)
- Boston HG, Clair AKS, Pratt JR, J. Appl. Polym.Sci., 46, 243 (1992)
- Jin HS, Chang JH, J. Appl. Polym. Sci., 107(1), 109 (2008)
- Park MH, Yang SJ, Jang WB, Han HS, Korean Chem. Eng. Res., 42, 305 (2005)
- Laius LA, Bessonov MI, Kallistova YV, Adrova NA, Florinskii FS, Vysokomol. Soyed., 10, 2185 (1967)
- Marek M Jr., Schmidt P, Schneider B, Makromol. Chem., 191, 2631 (1990)
- Brekner MJ, Feger C, J. Polym. Sci. Part A: Polym.Chem., 25, 2005 (1987)
- Frayer PD, “Synthesis, Characterization, and Applications”, in Polyimides, Mittal KL, Editor, Mittal, Plenum Press, New York, 1, 273 (1984)
- Ratta V, Ph.D. Thesis, Virginia Polytechnic Institute and State University (1999)
- Jang W, Shin D, Choi S, Park S, Han H, Polymer, 48(7), 2130 (2007)
- Matsumoto T, Kurosaki T, Macromolecules, 30(4), 993 (1997)
- Yang CP, Su YY, Polymer, 46(15), 5797 (2005)
- Matsumoto T, Macromolecules, 32(15), 4933 (1999)
- Choi IH, Chang JH, Polym.(Korea), 34(5), 480 (2010)
- Choi IH, Chang JH, Polym.(Korea), 34(5), 391 (2010)
- Choi IH, Chang JH, Polym. Adv. Technol., 20, 1 (2009)
- Jing XY, Chen SD, Yao EY, A Practical Guide to Infrared System, Tianjin Science and Technology Press, 26 (1992)
- Saeed MB, Zhan MS, Eur. Polym. J., 42, 1844 (2006)