Korean Chemical Engineering Research, Vol.50, No.4, 749-753, August, 2012
마이크로 원통형 SOFC 제작 및 특성평가
Fabrication and Evaluation Properties of Micro-Tubular Solid Oxide Fuel Cells (SOFCs)
E-mail:
초록
본 연구에서는 마이크로 원통형 SOFC 지지체의 특성을 평가하기 위해 직경 3 mm의 연료극 지지체를 제조하여 지지체의 미세구조를 분석하고, 기계적 강도 및 가스투과도를 측정하였다. 다공성 연료극 지지체의 표면과 파단면의 미세구조를 분석하기 위해 SEM (Scanning Electron Microscope)을 이용하였다. 지지체의 가스투과도는 차압계를 이용하여 50, 100, 150 cc/min의 유량에서 측정하였으며, 기계적 강도는 만능 시험기를 이용하여 측정하였다. 마이크로 원통형 연료극 지지체의 기본적인 물성 평가 후 NiO-YSZ, YSZ, YSZ-LSM/LSM/LSCF로 구성된 마이크로 SOFC 단위전지를 제조하였으며, 반응온도와 연료 유량별로 성능평가를 수행하여 800 ℃에서 1095 mW/cm2의 출력이 얻어짐을 확인하였다. 또한, 반응 온도에 따른 전기화학적 임피던스 특성평가를 통하여 온도가 높아질수록 전해질 이온전도도가 증가되어 ohmic 저항이 감소되고 그에 따라 마이크로 관형 SOFC 셀 성능이 증가함을 확인할 수 있었다.
In present work, anode support for micro-tubular SOFC was fabricated with outer diameter of 3 mm and characterized with microstructure, mechanical properties and gas permeability. The microstructure of surface and cross section of a porous anode support were analyzed by using SEM (Scanning Electron Microscope) image. The gas permeability and the mechanical strength of anode support was measured and analysed by using differential pressure at the flow rates of 50, 100, 150 cc/min. and using universal testing machine respectively. The unit cell composed of NiOYSZ, YSZ, YSZ-LSM/LSM/LSCF was fabricated and operated with reaction temperature and fuel flow rate and showed maximum power density of 1095 mW/cm2 on the condition of 800 ℃. The performance of single cell for micro-tubular SOFC increased with the increasing the reaction temperature due to the decrement of ohmic resistance of cell by the increment of the ionic conductivity of electrolyte through the evaluation of electrochemical impedance analysis for single
cell with reaction temperature.
- Tompsett GA, Finnerty C, Kendall K, Alston T, Sammes NM, J. Power Sources., 86, 376 (2000)
- Singhal SC, Solid State Ion., 152, 405 (2002)
- Wang JM, Lu Z, Huang XQ, Chen KF, Ai N, Hu JY, Su WH, J. Power Sources, 163(2), 957 (2007)
- Sammes NM, Du Y, Bove R, J. Power Sources, 145(2), 428 (2005)
- Gardner FJ, Day MJ, Brandon NP, Pashley MN, Cassidy M, J. Power Sources, 86(1-2), 122 (2000)
- Lawlor V, Griesser S, Buchinger G, Olabi AG, Cordiner S, Meissner D, J. Power Sources, 193(2), 387 (2009)
- O'Hayre R, Cha SW, Colella W, Prinz FB, “Fuel Cell Fundamentals,” John Wiley & Sons, New York, 161 (2009)
- Momma A, Kaga Y, Takano K, Nozaki K, Negishi A, Kato K, Kato T, Inagaki T, Yoshida H, Hosoi K, Hoshino K, Akbay T, Akikusa J, Yamada M, Chitose N, Solid State Ion., 174(1-4), 87 (2004)
- Winkler W, J. Power Sources, 86(1-2), 449 (2000)
- Cimenti M, Birss VI, Hill M, Fuel Cells., 7, 377 (2007)
- Wagner N, Schnurnberger W, Muller B, Lang M, Electrochim. Acta, 43(24), 3785 (1998)
- Lang M, Franco T, Schiller G, Wagner N, J. Appl. Electrochem., 32(8), 871 (2002)
- Østergard MJL, Mogensen M, Electrochim. Acta., 38, 2015 (1993)
- Park BK, Lee JW, Lee SB, Lim TH, Park SJ, Song RH, Im WB, Shin DR, Int. J. Hydrog. Energy., I-9 (2012)
- Son HJ, Lim TH, Lee SB, Shin DR, Song RH, Kim SH, ECS Transactions., 7, 543 (2007)
- Shikazono N, Sakamoto Y, Yamaguchi Y, Kasagi N, J. Power Sources, 193(2), 530 (2009)
- Campana R, Merino RI, Larrea A, Villarreal I, Orera VM, J. Power Sources, 192(1), 120 (2009)