Journal of Industrial and Engineering Chemistry, Vol.18, No.4, 1418-1427, July, 2012
Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles
E-mail:
A novel oxide adsorbent of amorphous zirconium oxide (am-ZrO2) nanoparticles was synthesized by a simple hydrothermal process for effective arsenic removal from aqueous environment. Due to their high specific surface area (327.1 m2/g), large mesopore volume (0.68 cm3/g), and the presence of high affinity surface hydroxyl groups, am-ZrO2 nanoparticles demonstrated exceptional adsorption performance on both As(III) (arsenite) and As(V) (arsenate) without pre-treatment at near neutral condition. At pH ~ 7, the adsorption kinetic is fast and the adsorption capacity is high (over 83 mg/g for As(III) and over 32.4 mg/g for As(V), respectively). Under low equilibrium arsenic concentrations (Ce at 0.01 mg/L, the maximum contaminant level (MCL) for arsenic in drinking water), the amount of arsenic adsorbed by am-ZrO2 nanoparticles is over 0.92 mg/g for As(III) and over 5.2 mg/g for As(V), respectively. The adsorption mechanism of arsenic species onto am-ZrO2 nanoparticles was found to follow the inner-sphere complex mechanism. Testing with arsenic contaminated natural lake water confirmed the effectiveness of these am-ZrO2 nanoparticles in removing arsenic from natural water. The immobilized am-ZrO2 nanoparticles on glass fiber cloth demonstrated an even better arsenic removal performance than dispersed am-ZrO2 nanoparticles in water, paving the way for their potential applications in water treatment facility to treat arsenic contaminated water body without pre-treatment.
Keywords:As(III) and As(V) removal;Amorphous ZrO2 nanoparticles;Adsorption;Inner-sphere complex mechanism
- Hristovski KD, Westerhoff PK, Crittenden JC, Olson LW, Environ. Sci. Technol., 42(10), 3786 (2008)
- Biswas BK, Inoue JI, Inoue K, Ghimire KN, Harada H, Ohto K, Kawakita H, J. Hazard. Mater., 154(1-3), 1066 (2008)
- Huang X, Jiao LM, Liao XP, Shi B, Ind. Eng. Chem. Res., 47(15), 5623 (2008)
- Dambies L, Vincent T, Guibal E, Water Res., 36(15), 3699 (2002)
- Jain CK, Ali I, Water Res., 34(17), 4304 (2000)
- Karim MM, Water Res., 34(1), 304 (2000)
- Tanabe K, Yokota H, Hironaka H, Tsushima S, Kubota Y, Appl. Organomet. Chem., 15(4), 241 (2001)
- Gupta K, Biswas K, Ghosh UC, Ind. Eng. Chem. Res., 47(24), 9903 (2008)
- Zhang SX, Niu HY, Cai YQ, Zhao XL, Shi YL, Chem. Eng. J., 158(3), 599 (2010)
- Pena M, Meng XG, Korfiatis GP, Jing CY, Environ. Sci. Technol., 40(9), 1257 (2006)
- Basu T, Gupta K, Ghosh UC, Desalination., 55(5), 2039 (2010)
- Zhang Y, Yang M, Dou XM, He H, Wang DS, Environ. Sci. Technol., 39(18), 7246 (2005)
- Gupta K, Maity A, Ghosh UC, J. Hazard. Mater., 184(1-3), 832 (2010)
- Lenoble V, Bouras O, Deluchat V, Serpaud B, Bollinger JC, J. Colloid Interface Sci., 255(1), 52 (2002)
- Lenoble W, Laclautre C, Deluchat W, Serpaud B, Bollinger JC, J. Hazard. Mater., 123(1-3), 262 (2005)
- Pierce ML, Moore CB, Water Res., 16(7), 1247 (1982)
- Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1 (2007)
- Anderson MA, Ferguson JF, Gavis J, J. Colloid Interface Sci., 54(3), 391 (1976)
- Zhang GS, Qua JH, Liu HJ, Liu RP, Wua RC, Water Res., 41(9), 1921 (2007)
- Zheng YM, Lim SF, Chen JP, J. Colloid Interface Sci., 338(1), 22 (2009)
- Ren ZM, Zhang GS, Chen JP, J. Colloid Interface Sci., 358(1), 230 (2011)
- Suzuki TM, Bomani JO, Matsunaga H, Yokoyama T, React. Funct. Polym., 43(1), 165 (2000)
- Suzuki TM, Tanaka DAP, Tanco MAL, Kanesato M, Yokoyama T, J. Environ.Monit., 2(6), 550 (2000)
- Zhu XP, Jyo A, Sep. Sci. Technol., 36(14), 3175 (2001)
- Daus B, Wennrich R, Weiss H, Water Res., 38(12), 2948 (2004)
- Seko N, Basuki F, Tamada M, Yoshii F, React. Funct. Polym., 59(3), 235 (2004)
- Gupta K, Basu T, Ghosh UC, J. Chem. Eng. Data., 54(8), 2222 (2009)
- Ksapabutr B, Gulari E, Wongkasemjit S, Powder Technol., 148(1), 11 (2004)
- Guo GY, Chen YL, Appl. Phys. A., 84, 431 (2006)
- Filho CA, Zarbin AJG, Carbon., 44(14), 2869 (2006)
- Czigany Z, Hultman L, Ultramicroscopy., 110(7), 815 (2010)
- Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ, Hoehn E, Yang H, Johnson CA, Environ. Sci. Technol., 42(10), 3669 (2008)
- Sag Y, Aktay Y, J. Biochem. Eng., 12(2), 143 (2002)
- Azizian S, J. Colloid Interface Sci., 276(1), 47 (2004)
- Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X, Water Res., 39(11), 2327 (2005)
- Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
- Zhang XH, Zhu YN, Liu HL, Studies of Arsenic Chemical Action in Environment, Ke Xue Publisher, Beijing (2009)
- Dutta PK, Ray AK, Sharma VK, Millero FJ, J. Colloid Interface Sci., 278(2), 270 (2004)
- Redlich O, Peterson DL, J. Phys. Chem., 63(6), 1024 (1959)
- Raven KP, Jain A, Loeppert RH, Environ. Sci. Technol., 32(3), 344 (1998)
- Arai Y, Elzinga EJ, Sparks DL, J. Colloid Interface Sci., 235(1), 80 (2001)
- Manning BA, Fendorf SE, Goldberg S, Environ. Sci. Technol., 32(16), 2383 (1998)
- Goldberg S, Johnston CT, J. Colloid Interface Sci., 234(1), 204 (2001)
- Sun XF, HuA C. ,Qu JH, Desalin. Water Treat., 8(1-3), 139 (2009)
- Goldberg S, Johnston CT, J. Colloid Interface Sci., 234(1), 204 (2001)
- Stumm W, Chemistry of the Solid Water Interface, Wiley Interscience, New York (1999)
- Guan XH, Wang JM, Chusuei CC, J. Hazard. Mater., 156(1-3), 178 (2008)
- Guo HM, Stuben D, Berner Z, J. Colloid Interface Sci., 315(1), 47 (2007)
- Li Z, Zhang T, Li K, Dalton Trans., 40(9), 2062 (2011)