화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.4, 1418-1427, July, 2012
Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles
E-mail:
A novel oxide adsorbent of amorphous zirconium oxide (am-ZrO2) nanoparticles was synthesized by a simple hydrothermal process for effective arsenic removal from aqueous environment. Due to their high specific surface area (327.1 m2/g), large mesopore volume (0.68 cm3/g), and the presence of high affinity surface hydroxyl groups, am-ZrO2 nanoparticles demonstrated exceptional adsorption performance on both As(III) (arsenite) and As(V) (arsenate) without pre-treatment at near neutral condition. At pH ~ 7, the adsorption kinetic is fast and the adsorption capacity is high (over 83 mg/g for As(III) and over 32.4 mg/g for As(V), respectively). Under low equilibrium arsenic concentrations (Ce at 0.01 mg/L, the maximum contaminant level (MCL) for arsenic in drinking water), the amount of arsenic adsorbed by am-ZrO2 nanoparticles is over 0.92 mg/g for As(III) and over 5.2 mg/g for As(V), respectively. The adsorption mechanism of arsenic species onto am-ZrO2 nanoparticles was found to follow the inner-sphere complex mechanism. Testing with arsenic contaminated natural lake water confirmed the effectiveness of these am-ZrO2 nanoparticles in removing arsenic from natural water. The immobilized am-ZrO2 nanoparticles on glass fiber cloth demonstrated an even better arsenic removal performance than dispersed am-ZrO2 nanoparticles in water, paving the way for their potential applications in water treatment facility to treat arsenic contaminated water body without pre-treatment.
  1. Hristovski KD, Westerhoff PK, Crittenden JC, Olson LW, Environ. Sci. Technol., 42(10), 3786 (2008)
  2. Biswas BK, Inoue JI, Inoue K, Ghimire KN, Harada H, Ohto K, Kawakita H, J. Hazard. Mater., 154(1-3), 1066 (2008)
  3. Huang X, Jiao LM, Liao XP, Shi B, Ind. Eng. Chem. Res., 47(15), 5623 (2008)
  4. Dambies L, Vincent T, Guibal E, Water Res., 36(15), 3699 (2002)
  5. Jain CK, Ali I, Water Res., 34(17), 4304 (2000)
  6. Karim MM, Water Res., 34(1), 304 (2000)
  7. Tanabe K, Yokota H, Hironaka H, Tsushima S, Kubota Y, Appl. Organomet. Chem., 15(4), 241 (2001)
  8. Gupta K, Biswas K, Ghosh UC, Ind. Eng. Chem. Res., 47(24), 9903 (2008)
  9. Zhang SX, Niu HY, Cai YQ, Zhao XL, Shi YL, Chem. Eng. J., 158(3), 599 (2010)
  10. Pena M, Meng XG, Korfiatis GP, Jing CY, Environ. Sci. Technol., 40(9), 1257 (2006)
  11. Basu T, Gupta K, Ghosh UC, Desalination., 55(5), 2039 (2010)
  12. Zhang Y, Yang M, Dou XM, He H, Wang DS, Environ. Sci. Technol., 39(18), 7246 (2005)
  13. Gupta K, Maity A, Ghosh UC, J. Hazard. Mater., 184(1-3), 832 (2010)
  14. Lenoble V, Bouras O, Deluchat V, Serpaud B, Bollinger JC, J. Colloid Interface Sci., 255(1), 52 (2002)
  15. Lenoble W, Laclautre C, Deluchat W, Serpaud B, Bollinger JC, J. Hazard. Mater., 123(1-3), 262 (2005)
  16. Pierce ML, Moore CB, Water Res., 16(7), 1247 (1982)
  17. Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1 (2007)
  18. Anderson MA, Ferguson JF, Gavis J, J. Colloid Interface Sci., 54(3), 391 (1976)
  19. Zhang GS, Qua JH, Liu HJ, Liu RP, Wua RC, Water Res., 41(9), 1921 (2007)
  20. Zheng YM, Lim SF, Chen JP, J. Colloid Interface Sci., 338(1), 22 (2009)
  21. Ren ZM, Zhang GS, Chen JP, J. Colloid Interface Sci., 358(1), 230 (2011)
  22. Suzuki TM, Bomani JO, Matsunaga H, Yokoyama T, React. Funct. Polym., 43(1), 165 (2000)
  23. Suzuki TM, Tanaka DAP, Tanco MAL, Kanesato M, Yokoyama T, J. Environ.Monit., 2(6), 550 (2000)
  24. Zhu XP, Jyo A, Sep. Sci. Technol., 36(14), 3175 (2001)
  25. Daus B, Wennrich R, Weiss H, Water Res., 38(12), 2948 (2004)
  26. Seko N, Basuki F, Tamada M, Yoshii F, React. Funct. Polym., 59(3), 235 (2004)
  27. Gupta K, Basu T, Ghosh UC, J. Chem. Eng. Data., 54(8), 2222 (2009)
  28. Ksapabutr B, Gulari E, Wongkasemjit S, Powder Technol., 148(1), 11 (2004)
  29. Guo GY, Chen YL, Appl. Phys. A., 84, 431 (2006)
  30. Filho CA, Zarbin AJG, Carbon., 44(14), 2869 (2006)
  31. Czigany Z, Hultman L, Ultramicroscopy., 110(7), 815 (2010)
  32. Amini M, Abbaspour KC, Berg M, Winkel L, Hug SJ, Hoehn E, Yang H, Johnson CA, Environ. Sci. Technol., 42(10), 3669 (2008)
  33. Sag Y, Aktay Y, J. Biochem. Eng., 12(2), 143 (2002)
  34. Azizian S, J. Colloid Interface Sci., 276(1), 47 (2004)
  35. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X, Water Res., 39(11), 2327 (2005)
  36. Ho YS, McKay G, Process Biochem., 34(5), 451 (1999)
  37. Zhang XH, Zhu YN, Liu HL, Studies of Arsenic Chemical Action in Environment, Ke Xue Publisher, Beijing (2009)
  38. Dutta PK, Ray AK, Sharma VK, Millero FJ, J. Colloid Interface Sci., 278(2), 270 (2004)
  39. Redlich O, Peterson DL, J. Phys. Chem., 63(6), 1024 (1959)
  40. Raven KP, Jain A, Loeppert RH, Environ. Sci. Technol., 32(3), 344 (1998)
  41. Arai Y, Elzinga EJ, Sparks DL, J. Colloid Interface Sci., 235(1), 80 (2001)
  42. Manning BA, Fendorf SE, Goldberg S, Environ. Sci. Technol., 32(16), 2383 (1998)
  43. Goldberg S, Johnston CT, J. Colloid Interface Sci., 234(1), 204 (2001)
  44. Sun XF, HuA C. ,Qu JH, Desalin. Water Treat., 8(1-3), 139 (2009)
  45. Goldberg S, Johnston CT, J. Colloid Interface Sci., 234(1), 204 (2001)
  46. Stumm W, Chemistry of the Solid Water Interface, Wiley Interscience, New York (1999)
  47. Guan XH, Wang JM, Chusuei CC, J. Hazard. Mater., 156(1-3), 178 (2008)
  48. Guo HM, Stuben D, Berner Z, J. Colloid Interface Sci., 315(1), 47 (2007)
  49. Li Z, Zhang T, Li K, Dalton Trans., 40(9), 2062 (2011)