화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.4, 1314-1319, July, 2012
Digestive enzymes characterization of krill (Euphausia superba) residues deoiled by supercritical carbon dioxide and organic solvents
E-mail:
In this study, Enzyme activities of krill were characterized before and after lipid extraction by supercritical carbon dioxide (SC-CO2) and organic solvent, n-hexane and acetone. Krill SC-CO2 extraction was performed under the conditions of temperature range from 35 to 45 ℃ and pressure, 150-250 bar for 2.5 h with a constant flow rate of 22 g/min. Extraction yields of lipids increased with pressure and temperature. The digestive enzyme activities of protease, lipase and amylase of SC-CO2 treated krill residues were slightly decreased comparing to organic solvent, n-hexane and acetone treated residues. In SC-CO2 treated samples, all of the digestive enzymes showed slightly higher temperature stability. In the other hand the crude extracts of SC-CO2 and n-hexane treated krill samples showed almost same optimum pH and pH stability for each of the digestive enzymes. It was also found in SDS-PAGE that there are no significant differences in protein patterns of the crude extracts of untreated, SC-CO2, n-hexane and acetone treated krill indicating no denaturation of proteins.
  1. Fereidoon S, Janak K, Trends Food Sci. Technol., 12, 435 (2001)
  2. Wasserman BP, Food Technol., 44(4), 118 (1990)
  3. Haard NF, Food Technol., 53(7), 64 (1998)
  4. De-Vecchi SD, Coppes Z, J. Food Biochem., 20, 193 (1996)
  5. Anwar A, Saleemuddin M, Bioresour. Technol., 6, 175 (1998)
  6. Vulfson EN, Industrial Application of Lipases, Cambridge University Press, Great Britain, 271 (1994)
  7. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V, Eur. J. Biochem., 270, 3871 (2003)
  8. Tou JC, Jaczynski J, Chen YC, Nutr. Rev., 65(2), 63 (2007)
  9. Bligh EG, Dyer WJ, Can. J. Biochem. Physiol., 37, 911 (1959)
  10. Pariser ER, Wallerstei MBn, Corkery CJ, Brown NL, Fish Protein Concentrate:Panacea for World Malnutrition, MIT Press, Cambridge, MA (1978)
  11. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM, J. Food Eng., 95, 240 (2009)
  12. Yamaguchi K, Murakami M, Nakano H, Konosu, S, Kokura, H. Yamamoto H, Kosaka M, Hata K, J. Agric. Food Chem., 34, 904 (1986)
  13. Oda K, Murao S, Agric. Biol. Chem., 38, 2435 (1974)
  14. Vorderwulbcke T, Kieslich K, Erdmann H, Enzyme Microb. Technol., 14, 631 (1992)
  15. Hatzinikolaou DG, Kourentzi E, Stamatis H, Christakopoulos P, Kolisis FN, Kekos D, Macris BJ, J. Biosci. Bioeng., 88(1), 53 (1999)
  16. Miller GL, Anal. Chem., 31, 426 (1959)
  17. Laemmli UK, Nature., 227, 680 (1970)
  18. Morita A, Kajimoto O, J. Phys. Chem., 94, 6420 (1990)
  19. Bulgarevich DS, Sako T, Sugeta T, Otake K, Takebayashi Y, Kamizawa C, Horikawa Y, Kato M, Ind. Eng. Chem. Res., 41(9), 2074 (2002)
  20. Wimmer Z, Zarevucka M, Int. J. Mol. Sci., 11(1), 233 (2010)
  21. Giessauf A, Magor W, Steinberger DJ, Marr R, Enzyme Microb. Technol., 24(8-9), 577 (1999)
  22. Kamat SV, Beckman EJ, Russel AJ, Crit. Rev. Biotechnol., 15, 41 (1995)
  23. Habulin M, Knez Z, J. Chem. Technol. Biotechnol., 76(12), 1260 (2001)
  24. Eshel A, Lindner P, Smirnoff P, Newton S, Harpaz S, Comp. Biochem. Physiol., 627(A), 106 (1993)
  25. Natalia Y, Hashim R, Ali A, Chong A, Aquaculture., 233, 305 (2004)
  26. Gjellesvik DR, Lombardo D, Walther BT, Biochim. Biophys. Acta., 1124, 123 (1992)
  27. Munilla-Mordn R, Saborido-Rey F, Comp. Biochem. Physiol., 827(B), 113 (1996)
  28. Prasertsan P, Jitbunjerdkul S, Trairatananukoon T, Augur T (Eds.), New Horizons in Biotechnology, IRD editions, Kluwer Academic Publisher, India (2001)
  29. Abe R, Chib AY, Nakajima T, AAPG Bull., (11S), 197, 57 (2002)
  30. Stahl E, Quirin KW, Blagrove RJ, J. Agric. Food Chem., 32, 938 (1984)