화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.4, 1223-1232, July, 2012
Development of a kinetic model for Fischer.Tropsch synthesis over Co/Ni/Al2O3 catalyst
E-mail:
In the present research an active Co-Ni/Al2O3 catalyst was prepared by impregnation method for synthesis of light olefins in Fischer-Tropsch synthesis. After studying the effects of using optimized operating conditions on catalyst performance, the kinetic experimental study was performed in a differential micro-fixed-bed-reactor by altering reaction temperature (230-270 ℃), pressure (2-12 bar), gas hourly space velocity (2000-7200 h^(-1)) and H2/CO feed molar ratio (1-3). Based on Langmuir-Hinshelwood-Hougen-Watson (LHHW) approach, seven different two-parameter kinetic models were considered. The kinetic data of this study were fitted accurately by a simple form -rCO = APCOPH2 /(1 + bPCOP0.5H2)2 that assumed the following kinetically relevant steps, where CO dissociates via interaction with adsorbed hydrogen; the first hydrogenation step of the surface carbon was reversible and fast, while the second one was slow and rate determining. The kinetic parameters were determined using Levenberg-Marquardt (LM) method and the apparent activation energy and heat of adsorption were 78.70 kJ/mol and -14.16 kJ/mol, respectively.
  1. Ahon VR, Lage PLC, de Souza CDD, Mendes FM, Schmal M, J. Nat. Gas Chem., 15, 307 (2006)
  2. Dasgupta D, Wiltowski T, Fuel., 90, 174 (2011)
  3. Adesina AA, Appl. Catal. A: Gen., 138(2), 345 (1996)
  4. Sethuraman R, Bakhshi NN, Katikaneni SP, Idem RO, Fuel Process. Technol., 73(3), 197 (2001)
  5. Pour AN, Housaindokht MR, Zarkesh J, Irani M, Babakhani EG, J. Ind. Eng. Chem., 18(2), 597 (2012)
  6. Seo HJ, Yu EY, J. Ind. Eng. Chem., 11(5), 681 (2005)
  7. Mirzaei AA, Habibpour R, Kashi E, Appl. Catal. A., 296, 222 (2005)
  8. Feyzi M, Mirzaei AA, Bozorgzadeh HR, J. Nat. Gas Chem., 19, 341 (2010)
  9. Mirzaei AA, Babaei AB, Galavy M, Youssefi A, Fuel Process. Technol., 91(3), 335 (2010)
  10. Bonne RL, Lok CM, Cobalt on alumina catalysts U.S. Patent 5874381 (1999)
  11. Lok CM, Kelly GJ, Gray G, U.S. Patent 6927190 (2005)
  12. Dalai AK, Davis BH, Appl. Catal. A: Gen., 348(1), 1 (2008)
  13. Yates IC, Satterfield CN, Energy Fuels., 5, 168 (1991)
  14. Zennaro R, Tagliabue M, Bartholomew CH, Catal. Today, 58(4), 309 (2000)
  15. Das TK, Conner WA, Li JL, Jacobs G, Dry ME, Davis BH, Energy Fuels, 19(4), 1430 (2005)
  16. Atashi H, Siami F, Mirzaei AA, Sarkari M, J. Ind. Eng. Chem., 16(6), 952 (2010)
  17. Visconti CG, Tronconi E, Lietti L, Zennaro R, Forzatti P, Chem. Eng. Sci., 62, 38 (2007)
  18. Botao T, Jie C, Haijun W, Jiqing L, Shaocheng Z, Ya L, Ying L, Xiaohui G, Chin. J.Catal., 28, 687 (2007)
  19. Visconti CG, Ballova Z, Lietti L, Tronconi E, Zennaro R, Forzatti P, Advances in Fischer.Tropsch Synthesis, Catalysts and Catalysis, CRC Press Taylor & Francis Group, New York (2010)
  20. Yang J, Liu Y, Chang J, Wang YN, Bai L, Xu YY, Xiang HW, Li YW, Zhong B, Ind. Eng. Chem. Res., 42(21), 5066 (2003)
  21. Botes FG, van Dyk B, McGregor C, Ind. Eng. Chem. Res., 48(23), 10439 (2009)
  22. Botes FG, Ph.D. Thesis, Eindhoven University of Technology (2008)
  23. Van Dijk HAJ, Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands (2001)
  24. van Steen E, Schulz H, Appl. Catal. A: Gen., 186(1-2), 309 (1999)
  25. Wang J, Ph.D. Thesis, Brigham Young University, Provo, UT (1987)
  26. Pannell RB, Kibby CL, Kobylinski TP, in: Proceedings of 7th International Congress on Catalysts, Tokyo, 447 (1980)
  27. Das TK, Zhan X, Li J, Jacobs G, Dry ME, Davis BH, Catal. Catal., 163, 289 (2007)
  28. Sarup B, Wojciechowski BW, Can. J. Chem. Eng., 74, 62 (1989)
  29. Sari A, Zamani Y, Taheri SA, Fuel Process. Technol., 90(10), 1305 (2009)
  30. Mirzaei AA, Faizi M, Habibpour R, Appl. Catal. A: Gen., 306, 98 (2006)
  31. Zakeri M, Samimi A, Khorram M, Atashi H, Mirzaei A, Powder Technol., 200(3), 164 (2010)
  32. Feyzi M, Irandoust M, Mirzaei AA, Fuel Process. Technol., 92(5), 1136 (2011)
  33. Ngwenya T, Glasser D, Hildebrandt D, Coville N, Mukoma P, Ind. Eng. Chem. Res., 44(16), 5987 (2005)
  34. Dry ME, Appl. Catal. A: Gen., 138(2), 319 (1996)
  35. Tian L, Huo CF, Cao DB, Yang Y, Xu J, Wua BS, Xiang HW, Xu YY, Li YW, J.Mol. Struct., 941, 30 (2010)
  36. Liu Y, Teng BT, Guo XH, Li Y, Chang J, Tian L, Hao X, Wang Y, Xiang HW, Xu YY, Li YW, J. Mol. Catal. A-Chem., 272(1-2), 182 (2007)
  37. Wang Y, Fan W, Liu Y, Zeng ZY, Hao X, Chang M, Zhang CH, Xu YY, Xiang HW, Li YW, Chem. Eng. Process., 47(2), 222 (2008)
  38. Tristantini D, Logdberg S, Gevert B, Borg Ø, Holmen A, Fuel Process. Technol., 88, 643 (2007)
  39. Wang F, Xu YY, Ren J, Li YW, Chem. Eng. Process., 49(1), 51 (2010)
  40. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255 (1999)
  41. Dry ME, Anderson JR, Boudert M (eds.), New York, Springer-Verlag (1981)
  42. Das PC, 1990. Ph.D. Thesis, University of Saskatchewan.
  43. Schulz H, Schaub G, Claeys M, Riedel T, Appl. Catal. A: Gen., 186(1-2), 215 (1999)
  44. Lahtinen J, Varri J, Kauraala K, Soares EA, Van Hov MA, Surf. Sci., 448, 269 (2000)
  45. Kevan SD, Davis RF, Rosenblatt DH, Tobin JG, Mason MG, Shirley DA, Li CH, Tong SY, Phys. Rev. Lett., 46, 1629 (1981)
  46. Pour AN, Housaindokht MR, Tayyari SF, Zarkesh J, Shahri SMK, Chem. Eng. Res. Des., 89(3A), 262 (2011)
  47. Huff GA Jr., Satterfield CN, Ind. Eng. Chem. Process Des. Dev., 23, 696 (1984)
  48. Keyser MJ, Everson RC, Espinoza RL, Ind. Eng. Chem. Res., 39(1), 48 (2000)
  49. Rautavuoma A, van der Baan H, Appl. Catal., 1, 247 (1981)