Journal of Materials Science, Vol.47, No.5, 2206-2212, 2012
Microstructure and mechanical property of Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass subjected to rolling
The as-cast and the pre-annealed Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glasses were rolled at room temperature to different deformation degrees, and the microstructure and microhardness were examined. It is revealed that no phase transformation occurs in the as-cast/rolled specimen except for localized shear bands, indicating that the material has a good structural stability against plastic deformation. When the glass is pre-annealed in the supercooled liquid region for a short time, however, the stability deteriorates significantly. In this case, rolling deformation results in nanocrystallization in the specimen. The pre-annealed glass has less free volume than the as-cast glass, but it does not exhibit a quicker increase in free volume content during the rolling, suggesting that free volume is prone to annihilate at the crystal/glass interfaces. With nanocrystallization occurred, the microhardness of the pre-annealed specimen decreases at a slower rate than that of the as-cast one during rolling deformation.