Journal of Crystal Growth, Vol.323, No.1, 191-193, 2011
Multi-color quantum dot ensembles grown in selective-areas for shape-controlled broadband light source
Multi-color quantum dot (QD) ensembles were grown by selective-area growth method to realize a shape-controlled broadband light source. By using a metal-mask, QD ensembles and strain reducing layer (SRL) were formed in selective areas on a wafer. The SRL thickness was varied to achieve appropriate shifts in the peak wavelength of the QD emission spectrum up to 90 nm. A summation of PL spectra obtained from the multi-color QD ensembles shows a broadband emission spectrum with a width of approximately 120 nm, even though this spectrum is attributed to the ground state emissions of these QD ensembles. A current-induced broadband light source such as a superluminescent diode (SLD) based on the multi-color QD ensembles is expected to have an emission spectrum with a width of more than 120 nm owing to the combination of excited state emissions. Furthermore, a desired shape of the SLD spectrum can be obtained by controlling the injection current applied to each QD ensemble. This approach is promising for a shape-controlled broadband SLD, and it is particularly applicable to optical coherence tomography (OCT). (C) 2010 Elsevier B.V. All rights reserved.