화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.358, No.2, 497-505, 2011
Role of electrostatic interactions in two-dimensional self-assembly of tobacco mosaic viruses on cationic lipid monolayers
We explore two-dimensional self-assembly of tobacco mosaic viruses (TMVs) on a substrate-supported, fluid lipid monolayer by manipulating the electrostatic interactions, with specific focus on the effects of the cationic lipid concentration in the monolayer and the presence of Ca(2+) ions in the surrounding bulk solution. The TMV assemblies were characterized by grazing-incidence X-ray scattering and atomic force microscopy, and the inter-particle interaction quantified through X-ray scattering data analysis. In the absence of Ca(2+) ions, we found that higher charge densities on the lipid monolayer led to poorer in-plane order, which may be attributed to faster adsorption kinetics, due to the surface potential that increases with charge density. At the same time, higher lipid-charge densities also resulted in weaker repulsion between TMVs, due to partial screening of Coulomb repulsion by mobile cationic lipids in the monolayer. The lipid-charge dependence was diminished with increasing concentration of Ca(2+) ions, which also led to tighter packing of TMVs. The results indicate that Ca(2+) ions strengthen the screening of Coulomb repulsion between TMVs and consequently enhance the role of attractive forces. Control experiments involving Na(+) ions suggest that the attractive inter-TMV interaction has contributions from both the van der Waals force and the counter-ion-induced attraction that depends on ion valence. (C) 2011 Elsevier Inc. All rights reserved.