화학공학소재연구정보센터
Journal of Bioscience and Bioengineering, Vol.113, No.3, 293-299, 2012
Isolation of genes coding for chitin-degrading enzymes in the novel chitinolytic bacterium, Chitiniphilus shinanonensis, and characterization of a gene coding for a family 19 chitinase
Chitiniphilus shinanonensis type strain SAY3(T) is a strongly chitinolytic bacterium, originally isolated from the moat water in Ueda, Japan. To elucidate the chitinolytic activity of this strain, 15 genes (chiA-chiO) coding for putative chitin-degrading enzymes were isolated from a genomic library. Sequence analysis revealed the genes comprised 12 family 18 chitinases, a family 19 chitinase, a family 20 beta-N-acetylglucosaminidase, and a polypeptide with a chitin-binding domain but devoid of a catalytic domain. Two operons were detected among the sequences: chiCDEFG and chiLM. The gene coding for the polypeptide (chiN) showed sequence similarity to family 19 chitinases and was successfully expressed in Escherichia colt. ChiN demonstrated a multi-domain structure, composed of the N-terminal, two chitin-binding domains connected by a Pro- and Thr-rich linker, and a family 19 catalytic domain located at the C-terminus. The recombinant protein rChiN catalyzed an endo-type cleavage of N-acetyl-D-glucosamine oligomers, and also degraded insoluble chitin and soluble chitosan (degree of deacetylation of 80%). rChiN exhibited an inhibitory effect on hyphal growth of the fungus Trichoderma reesei. The chitin-binding domains of ChiN likely play an important role in the degradation of insoluble chitin, and are responsible for a growth inhibitory effect on fungi. (C) 2011, The Society for Biotechnology, Japan. All rights reserved.