화학공학소재연구정보센터
International Journal of Molecular Sciences, Vol.12, No.12, 8626-8644, 2011
Validation of Quantitative Structure-Activity Relationship (QSAR) Model for Photosensitizer Activity Prediction
Photodynamic therapy is a relatively new treatment method for cancer which utilizes a combination of oxygen, a photosensitizer and light to generate reactive singlet oxygen that eradicates tumors via direct cell-killing, vasculature damage and engagement of the immune system. Most of photosensitizers that are in clinical and pre-clinical assessments, or those that are already approved for clinical use, are mainly based on cyclic tetrapyrroles. In an attempt to discover new effective photosensitizers, we report the use of the quantitative structure-activity relationship (QSAR) method to develop a model that could correlate the structural features of cyclic tetrapyrrole-based compounds with their photodynamic therapy (PDT) activity. In this study, a set of 36 porphyrin derivatives was used in the model development where 24 of these compounds were in the training set and the remaining 12 compounds were in the test set. The development of the QSAR model involved the use of the multiple linear regression analysis (MLRA) method. Based on the method, r(2) value, r(2) (CV) value and r(2) prediction value of 0.87, 0.71 and 0.70 were obtained. The QSAR model was also employed to predict the experimental compounds in an external test set. This external test set comprises 20 porphyrin-based compounds with experimental IC(50) values ranging from 0.39 mu M to 7.04 mu M. Thus the model showed good correlative and predictive ability, with a predictive correlation coefficient (r(2) prediction for external test set) of 0.52. The developed QSAR model was used to discover some compounds as new lead photosensitizers from this external test set.