화학공학소재연구정보센터
Polymer(Korea), Vol.36, No.3, 393-400, May, 2012
저온 E Beam 증착 공정으로 제조된 폴리에테르설폰 유연기판용 ITO 필름 특성 연구
A Study on Characteristics of Tin-doped Indium Oxide Film for Polyethersulfone Flexible Substrate by Low Temperature E Beam Deposition Process
E-mail:
초록
광전소자 유연기판으로 사용되는 폴리에테르설폰(PES) 필름 위에 E beam을 이용하여 저온 증착된 indium tin oxide(ITO) 박막 특성을 살펴보았다. 증착 시 기판 온도가 증가함에 따라 저온 열처리 과정에서 ITO 결정화가 잘 이루어져 면 저항의 감소와 투과도가 증가됨을 알 수 있었다. 증착 시 사용된 산소 가스는 ITO의 결정화를 촉진시켜 면 저항 감소와 투과도 증가에 도움을 줌을 확인하였다. PES 기판 표면 거칠기가 증가될수록 증착된 ITO의 결정화가 잘 이루어지지 않으며 이는 면 저항의 증가 및 투과도의 감소 요인으로 작용함을 알 수 있었다.
The characteristics of indium tin oxide (ITO) thin film deposited on polyethersulfone (PES) film by low temperature E beam has been studied for the flexible photovoltaic devices. It was found that the substrate temperature in the deposition process affected the crystallization behavior of ITO during the post low temperature annealing process. Higher substrate temperature resulted in the increase of crystallinity of annealed ITO. Consequently, the lowering of sheet resistivity and better transmittance were obtained. Crystallization of ITO during the annealing process was facilitated by using oxygen gas in the deposition process and resulted in the enhancement on sheet resistivity and transmittance of ITO. The surface roughness of PES film prohibited the crystallization of ITO during the annealing process and it caused the increase of sheet resistivity and the decrease of transmittance of ITO.
  1. Choi MC, Kim Y, Ha CS, Prog. Polym. Sci., 33, 581 (2008)
  2. Hamberg I, Granqvist CG, J. Appl. Phys., 60, 123 (1986)
  3. Muranaka S, Bando T, Takada T, Thin Solid Films., 151, 355 (1987)
  4. Ishibashi S, Higuchi Y, Ota Y, Nakamura K, J. Vat. Sci.Technol., A8, 1403 (1990)
  5. Ray S, Banerjee R, Basu N, Batabyal AK, Barna AK, J. Appl. Phys., 54, 3497 (1983)
  6. Takaki S, Matsumoto K, Suzuki K, Appl. Sur. J. Sci., 33, 919 (1988)
  7. Ndth P, Bunshah RF, Masel BM, Stuffsud OM, Thin Solid Films., 72, 463 (1980)
  8. Paine DC, Whitson T, Janiac D, Beresford R, Yang CO, J. Appl. Phys., 85, 8445 (1999)
  9. Hsu CM, Lee JM, Chen JS, Huang CY, Lin JC, Proc. SPIE., 4918, 135 (2002)
  10. Shigesato Y, Takaki S, Haranoh T, J. Appl. Phys., 71, 3358 (1992)
  11. Higuchi M, Sawada M, Kuronuma Y, J. Electrochem. Sot., 140, 1773 (1993)
  12. Shigesato Y, Paine DC, Thin Solid Films, 238(1), 44 (1994)
  13. Lee YY, Lee KA, J. Opt. Soc. Korea., 11, 152 (2000)
  14. Yamamoto S, Yamanaka T, Ueda Z, J. Vat. Sci. Technol., A5, 1957 (1987)
  15. Kim H, Horwitz JS, Kushto GP, Kafafi ZH, Chrisey DB, Appl. Phys. Lett., 79, 284 (2001)
  16. Lim H, Bae CM, Kim YK, Park CH, Cho WJ, Ha CS, Syn. Met., 49, 135 (2003)
  17. Park HJ, Park JW, Jeong SY, Ha CS, Proc. IEEE., 93, 1447 (2005)
  18. Assuncao V, Fortunato E, Marques A, Aguas H, Ferreira I, Costa MEV, Martins R, Thin Solid Films, 427(1-2), 401 (2003)
  19. Kim JY, Jung JH, Lee DE, Joo J, Syn. Met., 126, 311 (2002)
  20. Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Nano Lett., 6, 1880 (2006)
  21. Song PK, Shigesato Y, Yasui I, Yang CWO, Paine DC, Jpn. J. Appl. Phys., 37, 1870 (1998)
  22. Morikawa H, Fujita M, Thin Solid Films, 339(1-2), 309 (1999)