화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.3, 1178-1185, May, 2012
Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal
E-mail:
We describe that a hydrothermal preparation of flower-like TiO2-graphene oxide (GO-TiO2) hybrid by stirring a titanium oxide precursor in isopropyl alcohol with GO colloidal solution. The GO-TiO2 hybrid was applied for the removal of heavy metal ions from water. The oxygenated functional groups of exfoliated graphite oxide showed a high removal capacity of heavy metals. The flower-like TiO2 on GO structure significantly improved the removal efficiency of heavy metals. For example, the GO-TiO2 hybrid adsorption capacities of heavy metal ions, after 6 h and 12 h of hydrothermal treatment at 100 ℃, were respectively 44.8 ± 3.4 and 88.9 ± 3.3 mg/g for removing Zn2+, 65.1 ± 4.4 and 72.8 ± 1.6 mg/g for removing Cd2+, and 45.0 ± 3.8 and 65.6 ± 2.7 mg/g for removing Pb2+ at pH 5.6. In contrast, colloidal GO under identical condition showed removal capacities of 30.1 ± 2.5 (Zn2+), 14.9 ± 1.5 (Cd2+), and 35.6 ± 1.3 mg/g (Pb2+). TiO2 blossoms markedly formed upon GO as the hydrothermal treatment time at 100 8C increased from 6 h to 12 h. Longer treatment times resulted in an increase in the surface area of GO-TiO2 hybrid and thus its removal capacity of heavy metal increased.
  1. Kim F, Cote LJ, Huang JX, Adv. Mater., 22(17), 1954 (2010)
  2. Compton OC, Nguyen ST, Small., 6, 711 (2010)
  3. Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Nano Lett., 9, 1058 (2009)
  4. Boukhvalov DW, Katsnelson MI, J. Am. Chem. Soc., 130(32), 10697 (2008)
  5. Jeong HK, Lee YP, Lahaye RJWE, Park MH, An KH, Kim IJ, Yang CW, Park CY, Ruoff RS, Lee YH, J. Am. Chem. Soc., 130(4), 1362 (2008)
  6. Li D, Mu¨ ller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3, 101 (2008)
  7. Choi BG, Park H, Park TJ, Yang MH, Kim JS, Jang SY, Heo NS, Lee SY, Kong J, Hong WH, ACS nano., 4, 2910 (2010)
  8. Cote LJ, Kim F, Huang JX, J. Am. Chem. Soc., 131(3), 1043 (2009)
  9. Wilson NR, Randey RA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J, ACS nano., 3, 2547 (2009)
  10. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H, J.Phys. Chem. C., 113, 10842 (2009)
  11. Xu C, Wang X, Zhu J, J. Phys. Chem. C., 112, 19841 (2008)
  12. Muszynski R, Seger B, Kamat PV, J. Phys. Chem. C., 112, 5263 (2008)
  13. Si Y, Samulski ET, Chem. Mater., 20, 6792 (2008)
  14. Shen YJ, Hu Y, Shi M, Li N, Ma H, Ye M, J. Phys. Chem. C., 114, 1498 (2010)
  15. Singh VK, Patra MK, Manoth M, Gowd GS, Vadera SR, Kumar N, New Carbon Mater., 24, 147 (2009)
  16. Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf LV, Hu D, Zhang J, Graff GL, Liu J, Pope MA, Aksay IA, ACS nano., 4, 1587 (2010)
  17. Petit C, Bandosz TJ, J. Phys. Chem. C., 113, 3800 (2009)
  18. Seredych M, Bandosz TJ, J. Phys. Chem. C., 111, 15596 (2007)
  19. Petit C, Bandosz TJ, Adv. Funct. Mater., 20(1), 111 (2010)
  20. Zhang JL, Zhang F, Yang HJ, Huang XL, Liu H, Zhang JY, Guo SW, Langmuir, 26(9), 6083 (2010)
  21. Manga KK, Zhou Y, Yan YL, Loh KP, Adv. Funct. Mater., 19(22), 3638 (2009)
  22. Peng W, Wang Z, Yoshizawa N, Hatori H, Hirotsu T, Chem. Commun., 36, 4348 (2008)
  23. Williams G, Kamat PV, Langmuir, 25(24), 13869 (2009)
  24. Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL, J. Phys. Chem. C., 113, 19812 (2009)
  25. Akhavan O, Ghaderi E, J. Phys. Chem. C., 113, 20214 (2009)
  26. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J, ACS nano., 3, 907 (2009)
  27. Zhang H, Lv X, Li Y, Wang Y, Li J, ACS nano., 4, 380 (2010)
  28. Williams G, Seger B, Kamat PV, ACS nano., 2, 1487 (2008)
  29. Jiang G, Lin Z, Chen C, Zhu L, Chang Q, Wang N, Wei W, Tang H, Carbon., 49, 2693 (2011)
  30. Wang W, Serp P, Kalck P, Silva CG, Faria JL, Mater. Res. Bull., 43, 958 (2008)
  31. Woan K, Pyrgiotakis G, Sigmund W, Adv. Mater., 21, 1 (2009)
  32. Liu B, Zeng HC, Chem. Mater., 20, 2711 (2008)
  33. Kedem S, Schmidt J, Paz Y, Cohen Y, Langmuir, 21(12), 5600 (2005)
  34. Wang WD, Serp P, Kalck P, Faria JL, Appl. Catal. B: Environ., 56(4), 305 (2005)
  35. Liu M, Piao L, Lu W, Ju S, Zhao L, Zhou C, Li H, Wang W, Nanoscale., 2, 1115 (2010)
  36. Rao GP, Lu C, Su F, Sep. Purif. Technol., 58(1), 224 (2007)
  37. Li YH, Wang SG, Wei JQ, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ, Chem. Phys. Lett., 357(3-4), 263 (2002)
  38. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D, Carbon., 41, 1057 (2003)
  39. Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS, ACS nano., 2, 572 (2008)
  40. Xie X, Gao L, Curr. Appl. Phys., 9, 5185 (2009)
  41. Rashidi F, Sarabi RS, Ghasemi Z, Seif A, Superlattices Microstruct., 48, 577 (2010)
  42. Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T, J. Hazard. Mater., 186(1), 921 (2011)
  43. Zhang K, Dwivedi V, Chi CY, Wu JS, J. Hazard. Mater., 182(1-3), 162 (2010)