화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.18, No.3, 1018-1022, May, 2012
Synthesis of dimethyl carbonate from urea and methanol over ZnO(X)-CeO2(1-X) catalysts prepared by a sol-gel method
E-mail:
ZnO(X)-CeO2(1 - X) (X = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0) catalysts were prepared by a sol-gel method with a variation of ZnO content (X, mol%), and they were applied to the synthesis of dimethyl carbonate from urea and methanol. To investigate the effect of acidity and basicity on the catalytic performance, NH3-TPD and CO2-TPD experiments were conducted. Experimental results revealed that basicity of the catalysts played more important role in determining catalytic performance than acidity. Yield for dimethyl carbonate increased with increasing basicity of the catalyst. Among the catalysts tested, ZnO(0.7)-CeO2(0.3) with the largest basicity exhibited the best catalytic performance.
  1. Shaikh AA, Sivaram S, Chem. Rev., 96, 718 (1980)
  2. Jessop PG, Ikariya T, Noyori R, Science, 269(5227), 1065 (1995)
  3. Shaikh AA, Sivaram S, Chem. Rev., 96(3), 951 (1996)
  4. Ono Y, Appl. Catal. A: Gen., 155(2), 133 (1997)
  5. Delledonne D, Rivetti F, Romano U, Appl. Catal. A: Gen., 221(1-2), 241 (2001)
  6. Pacheco MA, Marshall CL, Energy Fuels, 11(1), 2 (1997)
  7. Megahed S, Ebner W, J. Power Sources., 54, 155 (1995)
  8. Bai RX, Wang S, Mei FM, Li T, Li GX, J. Ind. Eng. Chem. (2011), doi:10.1016/j.jiec.2011.05.027
  9. Ilham Z, Saka S, Bioresour. Technol., 100, 1793 (2009)
  10. Hood HP, Mordock HR, J. Phys. Chem., 23, 498 (1919)
  11. Babad H, Zeiler AG, Chem. Rev., 73, 75 (1973)
  12. King ST, Catal. Today, 33(1-3), 173 (1997)
  13. Matsuzaki T, Nakamura A, Catal. Surv. Jpn., 1, 77 (1997)
  14. Ju HY, Manju MD, Kim KH, Park SW, Park DW, Korean J. Chem. Eng., 24(5), 917 (2007)
  15. Kim DW, Kim CW, Koh JC, Park DW, J. Ind. Eng. Chem., 16(3), 474 (2010)
  16. Stoica G, Abello S, Perez-Ramirez J, Appl. Catal. A: Gen., 365(2), 252 (2009)
  17. Ball P, Fuellmann H, Heitz W, Angrew. Chem. Int. Ed., 19, 718 (1980)
  18. Kaminskaia NV, Kostic NM, Inorg. Chem., 37(17), 4302 (1998)
  19. Zhao WB, Peng WC, Wang DF, Zhao N, Li JP, Xiao FK, Wei W, Sun YH, Catal.Commun., 10, 655 (2009)
  20. Fu YC, Zhu HY, Shen JY, Thermochim. Acta., 434, 88 (2005)
  21. Anderson SA, Manthata S, Root TW, Appl. Catal. A: Gen., 280(2), 117 (2005)
  22. Wang DP, Yang BL, Zhai XW, Zhou LG, Fuel Process. Technol., 88(8), 807 (2007)
  23. Suciu EN, Kuhlmann B, Knudsen GA, Michaelson RC, J. Organomet. Chem., 41, 556 (1998)
  24. Wang M, Wang H, Zhao N, Wei W, Sun YH, Catal. Commun., 7, 6 (2006)
  25. Wang DF, Zhang XL, Zhao WB, Peng WC, Zhao N, Xiao FK, Wei W, Sun YH, J.Phys. Chem. Solids., 71, 427 (2010)
  26. Wang DF, Zhang XL, Gao YY, Xiao FK, Wei W, Sun YH, Catal. Commun., 11, 430 (2010)
  27. Wang MH, Zhao N, Wei W, Sun YH, Ind. Eng. Chem. Res., 44(19), 7596 (2005)
  28. Mishra BG, Rao GR, J. Mol. Catal. A-Chem., 243(2), 204 (2006)
  29. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK, Korean J. Chem. Eng., 25(1), 41 (2008)
  30. Pushkar YN, Parenago OO, Fionov AV, Lunina EV, Colloids Surf. A Physicochem.Eng. Aspects., 158, 179 (1999)
  31. Li H, Yue Y, Miao C, Xie Z, Hua W, Gao Z, Catal. Commun., 8, 1317 (2007)