Macromolecular Research, Vol.20, No.5, 496-502, May, 2012
Nanocomposites of Novolac Type Phenolic Resins and Organoclays: The Effects of the Resin Molecular Weight and the Amine Salt Structure on the Morphology and the Mechanical Properties of the Composites
E-mail:
Nanocomposites of novolac-type phenolic resins having various molecular weights with a series of organoclays containing organic amine salts were prepared by melt processing. The effects of the molecular weight of novolac resin and the amine structure of organoclay on composite morphology and physical properties were examined. Composites containing organoclay exhibited the intercalated state with shifts in gallery spacing regardless of the molecular weight of novolac resin. The extent of silicate platelet intercalation increased as molecular weight of novolac resin increased and the number of long alkyl tails decreased from two to one. Novolac resin/organoclay composites cured with hexamethylenetetramine (HMTA) always exhibited better flexural and Izod impact strengths than the novolac resin cured with HMTA when the molecular weight of novolac resin was fixed. Among the nanocomposites prepared here using organoclays, those with higher platelet intercalation generally showed better flexural and Izod impact strengths. However, resin-coated sands prepared from organoclay containing one long alkyl tail exhibited only better flexural strength than that prepared from novolac resin.
Keywords:novolac phenolic resin;organoclays;nanocomposite;molecular weight of resin;resin coated sand;mechanical properties.
- Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A, Macromolecules, 30(20), 6333 (1997)
- Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A, J. Appl. Polym. Sci., 67(1), 87 (1998)
- Galgali G, Ramesh C, Lele A, Macromolecules, 34(4), 852 (2001)
- Wang KH, Choi MH, Koo CM, Choi YS, Chung IJ, Polymer, 42(24), 9819 (2001)
- Lertwilmolnun W, Vergnes B, Polymer, 46(10), 3462 (2005)
- Shah RK, Cui LL, Williams KL, Bauman B, Paul DR, J. Appl. Polym. Sci., 102(3), 2980 (2006)
- Cui L, Ma XY, Paul DR, Polymer, 48(21), 6325 (2007)
- Stretz HA, Paul DR, Li R, Keskkula H, Cassidy PE, Polymer, 46(8), 2621 (2005)
- Stretz HA, Paul DR, Polymer, 47(24), 8123 (2006)
- Jeong HM, Ahn YT, Macromol. Res., 13(2), 102 (2005)
- Jeong HM, Choi MY, Ahn YT, Macromol. Res., 14(3), 312 (2006)
- Jeong HM, Choi MY, Kim MS, An JH, Jung JS, Kim JH, Kim BK, Cho SM, Macromol. Res., 14(6), 610 (2006)
- Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993)
- Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997)
- Delozier DM, Orwoll RA, Cahoon JF, Johnston NJ, Smith GJ, Connell JW, Polymer., 43, 813 (200)
- Fornes TD, Yoon PJ, Keskkula H, Paul DR, Polymer, 42(25), 9929 (2001)
- Fornes TD, Yoon PJ, Hunter DL, Keskkula H, Paul DR, Polymer., 43, 9915 (2002)
- Yoon PJ, Hunter DL, Paul DR, Polymer, 44(18), 5323 (2003)
- Messersmith PB, Giannelis EP, Chem. Mater., 6, 1719 (1994)
- Lan T, Pinnavaia TJ, Chem. Mater., 6, 2216 (1994)
- Wang Z, Pinnavaia TJ, Chem. Mater., 10, 1820 (1998)
- Peter WK, in Phenolic Resin in Encyclopedia of Polymer Science and Engineering, Mark HF, Bikales NM, Overberger CG, Menges G, Eds., John Wiley & Sons, New York, 11, 45 (1998)
- Bardziella A, Pilato LA, Knop A, Phenolic Resins, Chemistry Applications, Standardization, Safety and Ecology, 2nd ed., Springer, New York (2000)
- Usuki A, Mizutani T, Fukushima Y, Fujimoto M, Fukumori K, Kojima Y, Sato N, Kurauchi T, Kamigaito O, U.S. Patent 4,889,885 (1989)
- Choi MH, Chung IJ, Lee DJ, Chem. Mater., 12, 2977 (2000)
- Koo JH, Stretz HA, Bray AV, Wootan W, Mulich S, Powell B, Weispfenning J, Grupa T, SAMPE Proceedings., 47, 1085 (2002)
- Kong SG, Hong JH, Kim CK, Ind. Eng. Chem. Res., 49(23), 11954 (2010)
- Hsieh AJ, Moy P, Beyer FL, Madison P, Napadensky E, Ren JX, Krishnamoorti R, Polym. Eng. Sci., 44(5), 825 (2004)
- Xu L, Reeder S, Thopasridharan M, Ren J, Shipp DA, Krishnamoorti R, Nanotechnology., 16, S514 (2005)