화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.5, 453-458, May, 2012
Simultaneous Fabrication of an Alignment Layer and a Wall Structure for a Liquid Crystal Display by Solvent-Assisted Micromolding
E-mail:
Patterning and aligning are the most distinctive research areas in surface science. In this paper, we demonstrate a fabrication method for the simultaneous formation of a wall-structured surface relief and a molecular aligning region between the walls. A photoreactive polymer, poly(vinyl cinnamate) (PVCi), was used as the matrix; it was coated either onto a rigid glass substrate or a flexible plastic substrate. We used a solvent-assisted micro-molding poly(dimethylsiloxane) stamp to form 10-μm-wide and 10-μm-high walls every 100 μm on the matrix. The direction of the molecular alignment in the region between the walls was perpendicular to the direction of the walls; this finding was confirmed by the subsequent liquid crystal (LC) alignment investigation. The alignment of this wide region between the wall structures is uncommon and differs from the molecular alignment induced by the microgroove topology due to the patterning. Additionally, the application of linearly polarized ultraviolet irradiation onto the photoreactive PVCi improved the molecular alignment either on the region between the walls or on the lateral side of the walls; this finding was confirmed by polarized light microscopy imaging. The simultaneous formation of the wall support in the molecular aligning region can be used in flexible LC displays, in which the maintenance of cell gaps and the aligning of the LC material play a critical role in display performance.
  1. Jang J, Mater. Today., 9, 46 (2006)
  2. Sung SJ, Jung EA, Kim DH, Son DH, Kang JK, Cho KY, Opt. Express., 18, 11737 (2010)
  3. Kim YT, Hong JH, Yoon TY, Lee SD, Appl. Phys.Lett., 88, 263501 (2006)
  4. Vorflusev V, Kumar S, Science., 283, 1903 (1999)
  5. Hah H, Sung SJ, Han M, Lee SS, Park JK, Displays., 29, 478 (2008)
  6. Kim Y, Francl J, Taheri B, West JL, Appl. Phys. Lett., 72, 2253 (1998)
  7. Jang SJ, Kim JH, Bae JH, Choi Y, Kim HR, Kim SI, Souk JH, Kim JH, Mol. Cryst. Liq. Cryst., 470, 191 (2007)
  8. Hellemans A, IEEE Spectr., 37, 18 (2000)
  9. Scharf T, Shlayen A, Gernez C, Basturk N, Grupp J, Mol. Cryst. Liq. Cryst., 412, 135 (2004)
  10. Hah H, Sung SJ, Han M, Lee S, Park JK, Mater. Sci.Eng. C., 27, 798 (2007)
  11. Vithana H, Johnson D, Bos P, Jpn. J. Appl. Phys., 35, L320 (1996)
  12. Schadt M, Schmitt K, Kozinkov V, Chigrinov V, Jpn. J.Appl. Phys., 31, 2155 (1992)
  13. Schadt M, Seiberle H, Schuster A, Nature, 381(6579), 212 (1996)
  14. Ichimura K, Akita Y, Akiyama H, Kudo K, Hayashi Y, Macromolecules, 30(4), 903 (1997)
  15. Sung SJ, Kim DH, Kim MR, Cho KY, Macromol. Res., 18(6), 614 (2010)
  16. Lee J, Lee S, Jeong YC, Cho KY, Park JK, Opt.Express., 17, 23565 (2009)
  17. Sung SJ, Yun JH, Lee S, Park JK, Kim DH, Cho KY, React. Funct. Polym., 70, 622 (2010)
  18. Lin TC, Yu SC, Chen PS, Chi KY, Pan HC, Chao CY, Curr. Appl. Phys., 9(3), 610 (2009)
  19. Hah H, Sung SJ, Park JK, Appl. Phys. Lett., 90, 063508 (2007)
  20. Choi JS, Cho KY, Yim JH, Eur. Polym. J., 46, 389 (2010)
  21. Lee NY, Lim JR, Lee MJ, Kim JB, Jo SJ, Baik HK, Kim YS, Langmuir, 22(21), 9018 (2006)
  22. Rogers JA, Bao ZN, Dhar L, Appl. Phys. Lett., 73, 294 (1998)
  23. Hahm J, Sibener SJ, Langmuir, 16(11), 4766 (2000)
  24. Kimura M, Misner MJ, Xu T, Kim SH, Russell TP, Langmuir, 19(23), 9910 (2003)
  25. Kim SH, Misner MJ, Xu T, Kimura M, Russell TP, Adv. Mater., 16(3), 226 (2004)
  26. Naciri J, Fang JY, Moore M, Shenoy D, Dulcey CS, Shashidar R, Chem. Mater., 12, 3288 (2000)