화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.55, No.5-6, 1486-1495, 2012
Modeling heat transfer in dilute two-phase flows using the Mesoscopic Eulerian Formalism
In dilute two-phase flows, the accurate prediction of the temperature of the dispersed phase can be of paramount importance. Indeed, processes such as evaporation or chemical reactions are strongly non-linear functions of heat transfer between the carrier and dispersed phases. This study is devoted to the validation of an Eulerian description of the dispersed phase - the Mesoscopic Eulerian Formalism (MEF) - in the case of non-isothermal flows. Direct Numerical Simulations using the MEF are compared to a reference Lagrangian simulation for a two-dimensional non-isothermal turbulent jet laden with solid particles. The objectives of this paper are (1) to study the influence of the thermal inertia of particles on their temperature distribution and (2) conduct an a posteriori validation of the MEF, which was recently extended to non-isothermal flows. The focus is on the influence of additional terms in the MEF governing equations, namely heat fluxes arising from the Random Uncorrelated Motion (RUM). Results show that mean and rms of particle temperature are strongly dependent of the thermal Stokes number. The mean temperature is satisfactorily predicted by the MEF, comparing to the Lagrangian reference. Under the conditions of the present study, the RUM heat fluxes have a marginal influence on the mean particle temperature. However, a significant impact was observed on the magnitude of particle temperature fluctuations. Neglecting the RUM heat fluxes leads to erroneous results while the Lagrangian statistics are recovered when it is accounted for in the regimes of low to moderate thermal Stokes number. (C) 2011 Elsevier Ltd. All rights reserved.