화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.54, No.17-18, 3856-3867, 2011
Pool boiling heat transfer on open-celled metallic foam sintered surface under saturation condition
The current study investigated the saturated pool boiling heat transfer of deionized water with added surfactant on a horizontal metallic foam surface with V-shape grooves under atmospheric pressure. The influences of the groove configurations, sodium dodecyl sulfate (SOS) concentration, foam thickness, and thermal conductivity of foam material on heat transfer performance and bubble growth patterns were studied. SOS with concentrations of 100, 400, and 800 ppm was used as the surfactant. The foam porosity was fixed at 0.95. V-shape grooves with various widths and groove number were manufactured in the foam samples, with three pore densities of 20, 100, and 130 PPI. Results showed that the effects of the groove configuration, SOS concentration, and thickness on boiling heat transfer are heavily dependent on foam pore density. The counter-flow between the released bubbles and sucked liquid plays a significant role in heat transfer performance. The existence of sufficient grooves delays the critical heat flux (CHF), whereas SDS can achieve CHF earlier. (C) 2011 Elsevier Ltd. All rights reserved.