화학공학소재연구정보센터
International Journal of Heat and Mass Transfer, Vol.54, No.11-12, 2467-2478, 2011
Coupling conjugate heat transfer with in-cylinder combustion modeling for engine simulation
A conjugate formulation to predict heat conduction in the solid domain and spray combustion in the fluid domain was developed for multidimensional engine simulation. Heat transfer through the wall affects the combustion process in the cylinder and the thermal loading on the combustion chamber surface. To account for the temporal and spatial variations of temperature on the chamber surface, a fully coupled numerical procedure was developed to simulate in-cylinder flow and solid heat conduction simultaneously. Temperature fields in both the fluid and the solid domains were coupled by imposing equal heat flux and equal temperature at the fluid-solid interface. The formulation was first validated against analytical solutions. The formulation was then applied to simulate the in-cylinder combustion process and the solid heat conduction in a diesel engine under different operating conditions. Results show that the present model is able to predict unsteady and non-uniform temperature distributions on the chamber surface, which can fluctuate by nearly 100 K during combustion. The highest temperature on the piston surface occurs at the bowl edge along the spray axis. Predicted global engine parameters agree well with the experimental data. The present approach can be used to improve engine design for optimal combustion and reduced thermal loading. (c) 2011 Elsevier Ltd. All rights reserved.