화학공학소재연구정보센터
IEEE Transactions on Automatic Control, Vol.57, No.1, 151-164, 2012
On Distributed Convex Optimization Under Inequality and Equality Constraints
We consider a general multi-agent convex optimization problem where the agents are to collectively minimize a global objective function subject to a global inequality constraint, a global equality constraint, and a global constraint set. The objective function is defined by a sum of local objective functions, while the global constraint set is produced by the intersection of local constraint sets. In particular, we study two cases: one where the equality constraint is absent, and the other where the local constraint sets are identical. We devise two distributed primal-dual subgradient algorithms based on the characterization of the primal-dual optimal solutions as the saddle points of the Lagrangian and penalty functions. These algorithms can be implemented over networks with dynamically changing topologies but satisfying a standard connectivity property, and allow the agents to asymptotically agree on optimal solutions and optimal values of the optimization problem under the Slater's condition.