Clean Technology, Vol.18, No.1, 31-37, March, 2012
Comparative Study of NIR-based Prediction Methods for Biomass Weight Loss Profiles
E-mail:
초록
바이오매스가 가진 재생 가능성과 환경적인 장점으로 인해 바이오매스는 바이오에너지와 다른 제품의 주요 원료가 되었다. 바이오매스의 중요 성질을 예측하기 위해 분광학 데이터를 이용하는 연구를 포함한 많은 연구가 수행되었는데 근적외선 분광학은 빠르고 신뢰성 있는 결과를 저비용으로 제공하는 비파괴 방법이기 때문에 널리 사용되었다. 이 연구에서는 서로 다른 여섯가지의 목질계 바이오매스의 근적외선 스펙트럼 데이터를 기반으로 질량 손실 프로파일을 예측하는 다변량 통계기법을 개발하였으며, 상관없는 잡음을 제거하고 근적외선 데이터를 잘 설명하는 파장대역을 선택하기 위해 웨이블릿 분석이
사용되었다. 실제 근적외선 데이터를 가지고 개발된 방법을 예시하였는데 이 때 여러가지 예측모델이 예측 성능을 기준으로 평가되었고 적절한 근적외선 스펙트럼 전처리법의 장점 또한 설명되었다. 웨이블릿으로 압축된 근적외선 스펙트럼을 이용한 부분최소자승법 예측모델이 가장 좋은 성능을 보였으며 개발된 방법은 바이오매스의 빠른 분석에 쉽게 적용될 수 있음 또한 증명되었다.
Biomass has become a major feedstock for bioenergy and other bio-based products because of its renewability and environmental benefits. Various researches have been done in the prediction of crucial characteristics of biomass, including the active utilization of spectroscopy data. Near infrared (NIR) spectroscopy has been widely used because of its attractive features: it’s non-destructive and cost-effective producing fast and reliable analysis results. This work developed the multivariate statistical scheme for predicting weight loss profiles based on the utilization of NIR spectra data measured for six lignocellulosic biomass types. Wavelet analysis was used as a compression tool to suppress irrelevant noise and to select features or wavelengths that better
explain NIR data. The developed scheme was demonstrated using real NIR data sets, in which different prediction models were evaluated in terms of prediction performance. In addition, the benefits of using right pretreatment of NIR spectra were also given. In our case, it turned out that compression of high-dimensional NIR spectra by wavelet and then PLS modeling yielded more reliable prediction results without handling full set of noisy data. This work showed that the developed scheme can be easily applied for rapid analysis of biomass.
- Saxena RC, Adhikari DK, Goyal HB, Renew. Sustain. Energy Rev., 13(1), 167 (2009)
- Balat M, Balat H, Appl. Energy., 86(11), 2273 (2009)
- Tsuchikawaa S, Appl. Spectrosc. Rev., 42, 43 (2007)
- Balat M, Balat H, Fuel., 90(11), 3268 (2011)
- Nicolai BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J, Postharvest Biol. Technol., 46(2), 99 (2007)
- Mallet SG, IEEE Trans. Pattern Anal. Mach. Intell., 11(7), 674 (1989)
- Alsberg BK, Woodward AM, Kell DB, Chemom. Intell. Lab. Syst., 37(2), 215 (1997)
- Wold S, Antti H, Lindgren F, Ohman J, Chemom. Intell. Lab. Syst., 44(1-2), 175 (1998)
- Westerhuis JA, de Jong S, Smilde AK, Chemom. Intell. Lab. Syst., 56(1), 13 (2001)