화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.50, No.2, 264-269, April, 2012
다구치 법을 통한 다이슬라이드식 사출성형의 공정파라미터 최적화
Optimization of Process Parameters of Die Slide Injection by Using Taguchi Method
E-mail:
초록
플라스틱 제품의 다이슬라이드식 사출성형은 기존 사출공법의 부가공정을 삭제하여 제품 생산에 요구되는 비용과 시간을 현저히 줄여준다. 그러나 다이슬라이드식 사출성형은 사출제품의 백화, 수지침투, 기공, 수지넘침 등의 결함들을 해결해야한다. 본 연구에서는 사출성형의 공정파라미터들을 유한요소법과 다구치법을 사용하여 최적화하고자 한다. 사출 성형해석은 Moldflow insight 2010 코드로 해석하며 2차 사출에서는 다단 사출코드를 적용한다. 폴리프로필렌(PP)을 밀폐용기인 냉각수 보조탱크로 성형할 때 사용하는 공정파라미터들은 다구치법의 망소특성과 L16 직교배열을 사용한 실험계획을 통해 최적화된다. 한편 최적값은 유의수준 5% 수준의 분산분석을 통해 타당성을 검증한다. 그리고 최적화 조건에서 성형된 제품과 기존 제품의 치수정확도를 비교한 결과 치수안정성이 5% 이상 개선됨을 확인하였다.
Die slide injection marvelously reduces the cost and time in processing plastic products because they can simplify the conventional process through eliminating additional process. However, this process must resolve some defects like whitening, resin infiltration, blowhole, resin overflow, etc. In this study, the process parameters of the injection molding are optimized by using the finite element method and Taguchi method. The injection molding analysis is simulated by employing the Moldflow insight 2010 code and the 2nd injection is by adopting the Multi-stage injection code. The process parameters are optimized by using the L16 orthogonal array and smaller-the-better characteristics of the Taguchi method that was used to produce an airtight container (coolant reservoir tank) from polypropylene (PP) plastic material.rodanwhile, the optimum values are confirmed to be similar in 95% confidence and 5% significance level through analysis of variance (ANOVA). rooreover, new products and old products were compared by mdasuring the dimensional accuracy, resulting in the improvement of dimensional stability more than 5%.
  1. Spencer RS, Gilmore GD, J. Coll. Sci., 6(2), 118 (1950)
  2. Spencer RS, Gilmore GD, J. Appl. Phys., 21(6), 523 (1950)
  3. Kamal MR, Kenig S, Polym. Eng. Sci., 12(4), 294 (1972)
  4. Kamal MR, Kenig S, Polym. Eng. Sci., 12(4), 302 (1972)
  5. Hieber CA, Shen SF, J. Non-Newton.Fluid Mech., 7(1), 1 (1980)
  6. Hirt CW, Nichols DD, J. comp. Phys., 39(1), 201 (1981)
  7. Dymond JH, Malhotra R, Int. J. Thermophys., 9(6), 941 (1988)
  8. Rudman M, Int. J. Numer. Fluids., 28(2), 357 (1998)
  9. Kim B, Jang W, Kim J, Cho J, Park YH, Choe S, HWAHAK KONGHAK, 41(5), 577 (2003)
  10. Taguchi G, Asian Productivity Organization., 1 (1988)