화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.10, 1341-1346, October, 2012
Comparison of bioethanol production of simultaneous saccharification & fermentation and separation hydrolysis & fermentation from cellulose-rich barley straw
E-mail:
Cellulose rich barley straw, which has a glucan content of 62.5%, followed by dilute acid pretreatment, was converted to bioethanol by simultaneous saccharification and fermentation (SSF). The optimum fractionation conditions for barley straw were an acid concentration of 1% (w/v), a reaction temperature of 158 ℃ and a reaction time of 15 min. The maximum saccharification of glucan in the fractionated barley straw was 70.8% in 72 h at 60 FPU/gglucan, while the maximum digestibility of the untreated straw was only 18.9%. With 6% content WIS (water insoluble solid) for the fractionated barley straw, 70.5 and 83.2% of the saccharification yield were in SHF and SSF (representing with glucose equivalent), respectively, and a final ethanol concentration of 18.46 g/L was obtained under the optimized SSF conditions: 34 ℃ with 15 FPU/g-glucan enzyme loading and 1 g dry yeast cells/L. The results demonstrate that the SSF process is more effective than SHF for bioethanol production by around 18%.
  1. Balat M, Energy Conv. Manag., 52(2), 858 (2011)
  2. Matsumura Y, Minowa T, Yamamoto H, Biomass Bioenerg., 29(5), 347 (2005)
  3. FAOSTAT. Food and agriculture organization of the United Nations, http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567# ancor (Accessed Sep. 2011).
  4. Kim S, Dale BE, Biomass Bioenerg., 26(4), 361 (2004)
  5. Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C, Appl. Biochem. Biotechnol., 142(3), 276 (2007)
  6. Brethauer S, Studer MH, Yang B, Wyman CE, Bioresour. Technol., 102(10), 6295 (2011)
  7. Zeng MJ, Mosier NS, Huang CP, Sherman DM, Ladisch MR, Biotechnol. Bioeng., 97(2), 265 (2007)
  8. Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
  9. Li ZM, Liu Y, Liao W, Chen SL, Zemetra RS, Biomass Bioenerg., 35(1), 542 (2011)
  10. Xiros C, Katapodis P, Christakopoulos P, Bioresour. Technol., 102(2), 1688 (2011)
  11. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
  12. Jeong TS, Um BH, Kim JS, Oh KK, Appl. Biochem. Biotechnol., 161(1-8), 22 (2010)
  13. Olofsson K, Bertilsson M, Liden G, Biotechnol. Biofuels., 1, 1 (2008)
  14. Lu X, Zhang Y, Liang Y, Yang J, Zhang S, Suzuki E, Korean J. Chem. Eng., 25(2), 302 (2008)
  15. Wyman CE, Spindler DD, Grohmann K, Biomass Bioenergy., 3(5), 301 (1992)
  16. Peng LC, Chen YC, Biomass Bioenerg., 35(4), 1600 (2011)
  17. Soderstrom J, Galbe M, Zacchi G, J. Wood Chem. Technol., 25, 187 (2005)
  18. Ohgren K, Galbe M, Zacchi G, Process Biochem., 42(5), 834 (2006)
  19. Wingren A, Galbe M, Zacchi G, Biotechnol. Prog., 19(4), 1109 (2003)
  20. Wingren A, Galbe M, Zacchi G, Bioresour. Technol., 99(7), 2121 (2008)
  21. Ehrman T, Chemical Analysis & Testing Standard Procedure., No.002 (1992)
  22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tmpleton D, Crocker D, NREL/TP-510-42618 (2010)
  23. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tmpleton D, NREL/TP-510-42623 (2008)
  24. Sluiter A, Hyman D, Payne C, Wolfe J, NREL/TP-510-42627 (2008)
  25. Selig M, Weiss N, Ji Y, NREL/TP-510-42629 (2008)
  26. Dowe N, Mcmillan J, NREL/TP-510-42630 (2008)
  27. Um BH, Bae SH, Korean J. Chem. Eng., 28(5), 1172 (2011)
  28. Ooshima H, Ishitani Y, Harano Y, Biotechnol. Bioeng., 27, 389 (1985)
  29. Philippidis GP, Smith TK, Appl. Biochem. Biotechnol., 51, 117 (1995)
  30. Oh KK, Kim SW, Jeong YS, Hong SI, Appl. Biochem. Biotechnol., 89(1), 15 (2000)
  31. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I, Process Biochem., 39, 1843 (2004)