Korean Journal of Chemical Engineering, Vol.29, No.10, 1341-1346, October, 2012
Comparison of bioethanol production of simultaneous saccharification & fermentation and separation hydrolysis & fermentation from cellulose-rich barley straw
E-mail:
Cellulose rich barley straw, which has a glucan content of 62.5%, followed by dilute acid pretreatment, was converted to bioethanol by simultaneous saccharification and fermentation (SSF). The optimum fractionation conditions for barley straw were an acid concentration of 1% (w/v), a reaction temperature of 158 ℃ and a reaction time of 15 min. The maximum saccharification of glucan in the fractionated barley straw was 70.8% in 72 h at 60 FPU/gglucan,
while the maximum digestibility of the untreated straw was only 18.9%. With 6% content WIS (water insoluble solid) for the fractionated barley straw, 70.5 and 83.2% of the saccharification yield were in SHF and SSF (representing with glucose equivalent), respectively, and a final ethanol concentration of 18.46 g/L was obtained under the optimized SSF conditions: 34 ℃ with 15 FPU/g-glucan enzyme loading and 1 g dry yeast cells/L. The results demonstrate that the SSF process is more effective than SHF for bioethanol production by around 18%.
Keywords:Barley Straw;Bioethanol;Fractionation;Simultaneous Saccharification Fermentation (SSF);Pretreatment
- Balat M, Energy Conv. Manag., 52(2), 858 (2011)
- Matsumura Y, Minowa T, Yamamoto H, Biomass Bioenerg., 29(5), 347 (2005)
- FAOSTAT. Food and agriculture organization of the United Nations, http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567# ancor (Accessed Sep. 2011).
- Kim S, Dale BE, Biomass Bioenerg., 26(4), 361 (2004)
- Chen Y, Sharma-Shivappa RR, Keshwani D, Chen C, Appl. Biochem. Biotechnol., 142(3), 276 (2007)
- Brethauer S, Studer MH, Yang B, Wyman CE, Bioresour. Technol., 102(10), 6295 (2011)
- Zeng MJ, Mosier NS, Huang CP, Sherman DM, Ladisch MR, Biotechnol. Bioeng., 97(2), 265 (2007)
- Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119 (2011)
- Li ZM, Liu Y, Liao W, Chen SL, Zemetra RS, Biomass Bioenerg., 35(1), 542 (2011)
- Xiros C, Katapodis P, Christakopoulos P, Bioresour. Technol., 102(2), 1688 (2011)
- Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M, Bioresour. Technol., 96(6), 673 (2005)
- Jeong TS, Um BH, Kim JS, Oh KK, Appl. Biochem. Biotechnol., 161(1-8), 22 (2010)
- Olofsson K, Bertilsson M, Liden G, Biotechnol. Biofuels., 1, 1 (2008)
- Lu X, Zhang Y, Liang Y, Yang J, Zhang S, Suzuki E, Korean J. Chem. Eng., 25(2), 302 (2008)
- Wyman CE, Spindler DD, Grohmann K, Biomass Bioenergy., 3(5), 301 (1992)
- Peng LC, Chen YC, Biomass Bioenerg., 35(4), 1600 (2011)
- Soderstrom J, Galbe M, Zacchi G, J. Wood Chem. Technol., 25, 187 (2005)
- Ohgren K, Galbe M, Zacchi G, Process Biochem., 42(5), 834 (2006)
- Wingren A, Galbe M, Zacchi G, Biotechnol. Prog., 19(4), 1109 (2003)
- Wingren A, Galbe M, Zacchi G, Bioresour. Technol., 99(7), 2121 (2008)
- Ehrman T, Chemical Analysis & Testing Standard Procedure., No.002 (1992)
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tmpleton D, Crocker D, NREL/TP-510-42618 (2010)
- Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Tmpleton D, NREL/TP-510-42623 (2008)
- Sluiter A, Hyman D, Payne C, Wolfe J, NREL/TP-510-42627 (2008)
- Selig M, Weiss N, Ji Y, NREL/TP-510-42629 (2008)
- Dowe N, Mcmillan J, NREL/TP-510-42630 (2008)
- Um BH, Bae SH, Korean J. Chem. Eng., 28(5), 1172 (2011)
- Ooshima H, Ishitani Y, Harano Y, Biotechnol. Bioeng., 27, 389 (1985)
- Philippidis GP, Smith TK, Appl. Biochem. Biotechnol., 51, 117 (1995)
- Oh KK, Kim SW, Jeong YS, Hong SI, Appl. Biochem. Biotechnol., 89(1), 15 (2000)
- Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I, Process Biochem., 39, 1843 (2004)