Applied Chemistry for Engineering, Vol.23, No.1, 77-85, February, 2012
해포석과 팽창진주암의 복합화에 의한 발포체 제조
A Foamed Body through the Complexation with the Sepiolite and Expanded Pearlite
E-mail:
초록
팽창진주암(expanded perlite)과 섬유상 해포석(sepiolite)과의 복합화를 통해 유연성을 지닌 세라믹 발포체의 제조가능성을 조사하였다. 무기광물 섬유 해포석의 해섬처리는 팽창진주암과 해포석으로 이루어진 세라믹발포체의 제조를 위해 가장 중요한 전 처리공정이다. 해섬된 해포석과 팽창진주암은 혼합 교반되어 슬러리 상태로 이루어지며, 이 슬러리상의 복합물은 300 ℃ 이하의 저온 열처리과정을 통해 형상화 및 발포화되어 괴상의 발포체로 제조된다. 슬러리상 복합물의 열처리공정은 슬러리 복합물 중에 잔존하는 수분의 증발단계, 일정발포온도에서 발포화제가 분해되어 진행되는 발포화단계 및 발포 후 잔류되는 유기물질의 분해제거단계를 포함하는 것으로 설계되어야 한다. 열처리 공정조건과 발포제는 상관성이 있으며 팽창진주암과 해포석섬유로 이루어진 슬러리상 혼합물의 발포에 적절한 발포제는 유기계 발포제가 적절하며 DSS (dioctyl sodium sulfosuccinte)가 효과적이었다.
Production process of the flexible ceramic foamed body through the complexation with the fiberous sepiolite and expanded pearlite was researched. The processing of fibrillation of the inorganic mineral fiber sepiolite is the most important whole processing for manufacturing of the ceramic foamed body consisting of the expanded perlite and sepiolite. The fibrous sepiolite and expanded pearlite are blended and becomes the slurry phase. And this slurry phase is converted to a massive foamed body through the low temperature heat treatment process less than 300 ℃. The heat-treatment process of the slurry phase composite has to be designed to include the evaporation step of the moisture remaining among the slurry composition, foaming step by the decomposition of the foaming agent, and resolution removal step of the organic material which was added in the composite remained after the foaming step. The heat treatment process should be considered as significant factors in design of total process. As to the condition of heat treatment process and foaming agent, there was the a correlation. An organic type foaming agent like DSS (dioctyl sodium sulfosuccinte) was effective in foaming of the slurry compound consisting of the expanded perlite and sepiolite fiber.
- Topcu IB, Isikdag B, Build. Environ., 42, 3540 (2007)
- Bolen WP, Perlite, In Minerals Yearbook (USGS) (2004)
- Korean Patent 10-0799243 (2008)
- Lee CT, Appl. Chem. Eng., 16, 440 (2005)
- Kim HJ, Kim SC, J. Korean Society of Environ. Admin., 8, 299 (2002)
- Korean Patent 10-1059569 (2011)
- Korean Patent 10-2004-0061208 (2004)
- Korean Patent 20-0440458 (2008)
- Korean Patent 10-0760040 (2007)
- Korean Patent 10-2000-0010796 (2001)
- Kavas T, Sabah E, Celik MS, Cem. Concr. Res., 34, 2135 (2004)
- Takada T, Wang SF, Yoshikawa S, Jang SJ, Newnham RE, J. Am. Ceram. Soc., 77, 1909 (1994)