화학공학소재연구정보센터
Energy, Vol.35, No.12, 4710-4725, 2010
Cylinder pressure, performance parameters, heat release, specific heats ratio and duration of combustion for spark ignition engine
An experimental work were conducted for investigating cylinder pressure, performance parameters, heat release, specific heat ratio and duration of combustion for multi cylinder spark ignition engine (SIE). Ccylinder pressure was measured for gasoline, kerosene and Liquefied Petroleum Gases (LPG) separately as a fuel for SIE. Fast Fourier Transformations (FEE) was used to cylinder pressure data transform from time domain into frequency domain to develop empirical correlation for calculating cylinder pressures at different engine speeds and different fuels. In addition, Inverse Fast Fourier Transformations (IFFT) was used to cylinder pressure reconstruct into time domain. The results gave good agreement between the measured cylinder pressure and the reconstructed cylinder pressure in time domain with different engine speeds and different fuels. The measured cylinder pressure and hydraulic dynamotor were the sours of data for calculating engine performance parameters. First law of thermodynamics and single zone heat release model with temperature dependant specific heat ratio gamma(T) were the main tools for calculating heat release and heat transfer to cylinder walls. Third order empirical correlation for calculating, gamma(T) was one of the main gains of the present study. The correlation gave good agreement with other researchers with wide temperatures range. For kerosene, cylinder pressure is higher than for gasoline and LPG due to high volumetric efficiency where kerosene density (mass/volume ratio) is higher than gasoline and LPG. In addition, kerosene heating value is higher than gasoline that contributes in heat release rate and pressure increases. Duration of combustion for different engine speeds was determined using four different methods: (I) Mass fuel burnt, (II) Entropy change, (Ill) Temperature dependant specific heat ratio gamma(T), and (IV) Logarithmic scale of (P&V). The duration of combustion for kerosene is smaller than for gasoline and LPG due to high heat release rate. Cylinder pressure measuring technique is a useful tool for understanding and analyzing the combustion characteristics and determining reliable statistical data that cannot measure directly. The present work contributes in determining combustion characteristics, development and optimal operating conditions of SIE for different fuels. (C) 2010 Elsevier Ltd. All rights reserved.