Current Microbiology, Vol.63, No.1, 81-86, 2011
Variations in Outer-membrane Characteristics of Two Stem-nodulating Bacteria of Sesbania rostrata and its Role in Tolerance Towards Diverse Stress
Outer-membrane characteristics may determine the survivability of rhizobia under diverse abiotic and biotic stresses. Therefore, the role of lipopolysaccharides (LPS) and membrane proteins of two stem-nodulating bacteria of Sesbania rostrata (Azorhizobium caulinodans ORS571 and Rhizobium sp. WE7) in determining tolerance towards abiotic and biotic stresses (hydrophobics and phages) was investigated. Outer-membrane characteristics (LPS and membrane-protein profiles) of ORS571, WE7 and thirteen standard strains were distinct. ORS571 and WE7 also showed susceptibility towards morphologically distinct phages, i.e., ACSR16 (short-tailed) and WESR29 (long-tailed), respectively. ORS571 and WE7 were tolerant to hydrophobic compounds (triton X-100, rifampicin, crystal violet and deoxycholate). To ascertain the role of outer membrane characteristics in stress tolerance, phageresistant transconjugant mutants of ORS571 (ORS571-M8 and ORS571-M20) and WE7 (WE7-M9) were developed. LPS- and membrane-protein profiles of mutants differed from that of respective wild types (ORS571 and WE7). In in vitro assay, phages got adsorbed onto purified LPS-membrane protein fractions of wild types. Phages did not adsorb onto membrane fraction of mutants and standard strains. Mutant with reduced expression of LPS (ORS571-M20 and WE7-M9) showed reduced tolerance towards hydrophobics. However, the tolerance was unaffected in mutant (ORS571-M8) where expression of LPS was not reduced but pattern was different. The tolerance level of mutants towards hydrophobics varied with the expression of LPS, whereas the specificity towards phages is correlated with the specific LPS pattern.