화학공학소재연구정보센터
Computers & Chemical Engineering, Vol.35, No.5, 817-827, 2011
A multi-level simulation approach for the crude oil loading/unloading scheduling problem
An integrated approach for refinery production scheduling and unit operation optimization problems is presented. Each problem is at a different decision making layer and has an independent objective function and model. The objective function at the operational level is an on-line maximization of the difference between the product revenue and the energy and environmental costs of the main refinery units. It is modeled as an NLP and is constrained by ranges on the unit's operating condition as well as product quality constraints. The production scheduling layer is modeled as an MILP with the objective of minimizing the logistical costs of unloading the crude oil over a day-to-week time horizon. The objective function is a linear sum of the unloading, sea waiting, inventory, and setup costs. The nonlinear simulation model for the process units is used to find optimized refining costs and revenue for a blend of two crudes. Multiple linear regression of the individual crude oil flow rates within the crude oil percentage range allowed by the facility is then used to derive linear refining cost and revenue functions. Along with logistics costs, the refining costs or revenue are considered in the MILP scheduling objective function. Results show that this integrated approach can lead to a decrease of production and logistics costs or increased profit, provide a more intelligent crude schedule, and identify production level scheduling decisions which have a tradeoff benefit with the operational mode of the refinery. (C) 2011 Elsevier Ltd. All rights reserved.