화학공학소재연구정보센터
Macromolecular Research, Vol.20, No.1, 93-100, January, 2012
Characterization and Hepatocytes Adhesion of Galactosylated Poly(D,L-lactic-co-glycolic acid) Surface
E-mail:
The present study demonstrated that covalently galactosylated poly(D,L-lactic-co-glycolic acid) (PLGA) surface encourages hepatocyte adhesion and growth to form a dense cell network. Galactosylation of the PLGA surface was accomplished by grafting allylamine (AA) using inductively coupled plasma-assisted chemical vapor deposition (ICP-CVD) and conjugating lactobionic acid (LA) with AA via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) activation. The modified surface was characterized by Fourier transform infrared spectroscopy in the attenuated total reflectance, electron spectroscopy of chemical analysis, atomic force microscopy, and contact angle measurement. For evaluation of cell affinity in vitro, primary rat hepatocytes were prepared and seeded onto the modified PLGA surfaces. The galactosylated PLGA surface showed more pronounced hepatocyte adhesion and growth compared to those on the control PLGA surface. The hepatocytes seeded on galactosylated substrates exhibited a radial migration with filopodial growth to form multicellular aggregates, whereas those on control PLGA showed slowly adhered rounded shapes. Moreover, galactosylation increased metabolic hepatocyte activities such as albumin secretion and urea synthesis.
  1. Starzl TE, Demetris AJ, Van TD, N. Engl. J. Med., 321, 1014 (1989)
  2. Meng W, Jung KH, Kang IK, Kwon OH, Akaike T, Macromol. Res., 13(3), 257 (2005)
  3. Yang KS, Guo X, Meng W, Hyun JY, Kang IK, Kim YI, Macromol. Res., 11(6), 488 (2003)
  4. Huang YC, Huang YY, Huang CC, Liu HC, J.Biomed. Mater. Res. Part B: Appl. Biomater., 74, 659 (2005)
  5. Lin HR, Kuo CJ, Yang CY, Shaw SY, Wu YJ, J.Biomed. Mater. Res., 63, 271 (2002)
  6. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH, Biomaterials., 24, 4011 (2003)
  7. Park HN, Lee JB, Kwon IK, J. Tissue Regen., 1, 10 (2010)
  8. You ES, Jang HS, Ahn WS, Kang MI, Jun MG, Kim YC, Chun HJ, J. Ind. Eng. Chem., 13(2), 219 (2007)
  9. Woodrow KA, Wood MJ, Saucier-Sawyer JK, Solbrig C, Saltzma WM, Tissue Eng. Part A., 15, 1169 (2009)
  10. Dong L, Gao S, Diao H, Chen J, Zhang J, J. Biomed.Mater. Res. A., 84, 777 (2008)
  11. Seested T, Nielsen HM, Christensen EI, Appa RS, Thromb. Haemost., 104, 1166 (2010)
  12. Jung YJ, Lee KH, Park CW, Suh TS, Hong CM, Hong SH, Ahn WS, Chun HJ, J. Ind. Eng. Chem., 11(1), 165 (2005)
  13. Owens DK, Wendt RC, J. Appl. Polym. Sci., 13, 1711 (1969)
  14. Zhu Y, Chan-Park MB, Chian KS, J. Biomed. Mater.Res. Part B: Appl. Biomater., 75, 193 (2005)
  15. Rajaraman R, Rounds DE, Yen SP, Rembaum A, Exp. Cell Res., 88, 327 (1974)
  16. Yin C, Ying L, Zhang PC, Zhuo RX, Kang ET, Leong KW, Mao HQ, J. Biomed. Mater. Res. A., 15, 1093 (2003)
  17. Yoon JJ, Nam YS, Kim JH, Park TG, Biotechnol. Bioeng., 78(1), 1 (2002)
  18. Hoshiba T, Wakejima M, Cho CS, Shiota G, AkaikeT, J. Biomed. Mater. Res. A., 85, 228 (2008)
  19. Lee JH, Park SJ, Chun HJ, Kim CH, Int. J. Tissue Regen., 1, 1 (2010)
  20. Takei R, Suzuki D, Hoshiba T, Nagaoka M, Seo SJ, Cho CS, Akaike T, Biotechnol. Lett., 27(16), 1149 (2005)
  21. Haque A, Hexig B, Meng Q, Hossain S, Naqaoka M, Akaike T, Biomaterials., 32, 2032 (2011)
  22. Fan J, Shang Y, Yuan Y, Yang J, J. Mater. Sci. Mater.Med., 21, 319 (2010)
  23. Gotoh Y, Ishizuka Y, Matsuura T, Niimi S, Biomacromolecules, 12(5), 1532 (2011)