Clean Technology, Vol.17, No.4, 336-345, December, 2011
바이오매스에 바인더 첨가에 따른 폐기물 고형연료 특성 및 환경성평가
Environmental Assessment and Characteristic of Refuse Derived Fuel by Mixed Biomass with Binder
E-mail:
초록
우리나라는 산림총면적이 전 국토의 64.2%로 목재자원은 지속적으로 생산가능한 중요한 자원이지만 현재 재활용 가능한 폐목재가 분리, 수거되지 않고, 불법매립 및 소각 처리되고 있는 실정이다. 따라서 본 연구에서는 폐목재에 바이오매스자원인 왕겨와 저품위 무연탄을 혼합 압축하여 고형연료를 제조하였으며, 고형연료 제조 시 바인더와 첨가제의 바인딩효과를 분석하였다. 이때, 고형연료의 물리, 화학적 특성을 분석하였으며, 연료기준치와의 비교를 통해 적합성을 판단하였다. 실험 결과 무연탄 20%, 왕겨 10%에서 최적의 밀도를 보였으며, P.V.A. (Polyvinyl alcohol), 구아검, 당밀 20 wt.%, 전분 10 wt.% 첨
가 시 가장 우수한 것으로 나타났다. 대부분의 샘플이 연료 품질기준 4등급인 저위발열량 3,500 kcal/kg을 만족하는 것으로 나타났으며, 아스팔트 첨가 시 12.9%의 내구성 향상이 나타났고, NaOH 5% 쌀겨 첨가 시 최대 5.8%의 내구성이 향상되는 것으로 나타났다.
The total area of forest land in Korea is 64.2%, and significant forest resources can continuously be produced. However our country didn't separate the recyclable waste wood and was illegal landfill or incinerated. In this study, waste-wood and rice husk of biomass and low-grade-anthracite made refuse derived fuel by mixing and compressing. In addition, the binding effect of
binders and additives were analyzed. Physical and chemical characteristics of manufactured refuse derived fuel were analyzed and evaluated suitability by compared with quality standards. A result of change with compressed and relaxed density, added 20% anthracite and 10% rice husk is optimal density change and average density increased large range when 20 wt.% P.V.A., guargum, molasses and 10 wt.% starch were added. All fuel samples be distributed over 3,500 kcal/kg LHV and grade of No. 3~4 fuels appeared. A result of the characteristics of physical and chemical compressed biomass refuse derived fuel with addictive, 12.9% of durability improvement appeared when is mixing asphalt and 5.8% of durability improvement appeared when is mixing rice bran by pretreatment of NaOH 5%.
- Kim KS, Choi HC, Bae YJ, Ahn JH, Cho H, J. KSWQ SEP., 13(3), 293 (1997)
- Oh KJ, Lee HD, Seo JB, Jeon SB, Cho SW, Korean Soc. Environ. Eng., 32(11), 1046 (2010)
- Cho SW, Oh KJ, Korean J. Environ. Health Soc., 25(1), 56 (1999)
- Jaan K, Priit K, Aare A, Viktor L, Peter K, Lubomir S, Ulo K, Estonian J. Eng., 16(4), 307 (2010)
- Milos M, Peter K, J. J. Appl. Math., 3(3), 87 (2010)
- Chin OC, Siddiqui KM, Biomass Bioenerg., 18(3), 223 (2000)
- Thomas M, Van der Poel A, Anim. Feed Sci.Technol., 61(1-4), 89 (1996)
- ASAE S269.4, ASAE Standards., 525 (1998)
- Temmerman M, Rabier F, Jensen PD, Hartmann H, Bohm T, Biomass Bioenerg., 30(11), 964 (2006)
- Tabil L, Sokhansanj, Appl. Eng. Agric., 12(3), 345 (1996)
- Colley Z, Fasina OO, Bransby D, Lee YY, Transactions of the ASABE., 49(6), 1845 (2006)
- Finney KN, Sharifi VN, Swithenbank J, Energy Fuels, 23, 3195 (2009)
- Zhang XL, Xu DP, Xu ZH, Cheng QR, Fuel Process. Technol., 73(3), 185 (2001)