Chemical Engineering Science, Vol.66, No.1, 64-72, 2011
Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
New approaches are proposed for nonlinear process monitoring and fault diagnosis based on kernel principal component analysis (KPCA) and kernel partial least analysis (KPLS) models at different scales, which are called multiscale KPCA (MSKPCA) and mustiscale KPLS (MSKPLS). KPCA and KPLS are applied to these multiscale data to capture process variable correlations occurring at different scales. Main contribution of the paper is to propose nonlinear fault diagnosis methods based on multiscale contribution plots. In particular, the nonlinear scores of the variables at each scale are derived. These nonlinear scale contributions can be computed, which is very useful in diagnosing faults that occur mainly at a single scale. The proposed methods are applied to process monitoring of a continuous annealing process and fused magnesium furnace. Application results indicate that the proposed approach effectively captures the complex relations in the process and improves the diagnosis ability. (C) 2010 Elsevier Ltd. All rights reserved.