화학공학소재연구정보센터
Chemical Engineering Research & Design, Vol.89, No.9A, 1461-1469, 2011
Exergoeconomic and exergoenvironmental evaluation of power plants including CO2 capture
CO2 capture from power plants, combined with CO2 storage, is a potential means for limiting the impact of fossil fuel use on the climate. In this paper, three oxy-fuel plants with incorporated CO2 capture are evaluated from an economic and environmental perspective. The oxy-fuel plants, a plant with chemical looping combustion with near 100% CO2 capture and two advanced zero emission plants with 100% and 85% CO2 capture are evaluated and compared to a similarly structured reference plant without CO2 capture. To complete the comparison, the reference plant is also considered with CO2 capture incorporating chemical absorption with monoethanolamine. Two exergy-based methods, the exergoeconomic and the exergoenvironmental analyses, are used to determine the cost-related and the environmental impacts of the plants, respectively, and to reveal options for improving their overall effectiveness. For the considered oxy-fuel plants, the investment cost is estimated to be almost double that of the reference plant, mainly due to the equipment used for oxygen production and CO2 compression. Furthermore, the exergoeconomic analysis reveals an increase in the cost of electricity with respect to the reference plant by more than 20%, with the advanced zero emission plant with 85% CO2 capture being the most economical choice. On the other hand, a life cycle assessment reveals a decrease in the environmental impact of the plants with CO2 capture, due to the CO2 and NOx emission control. This leads to a reduction in the overall environmental impact of the plants by more than 20% with respect to the reference plant. The most environmentally friendly concept is the plant with chemical looping combustion. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.