화학공학소재연구정보센터
Catalysis Letters, Vol.141, No.8, 1057-1066, 2011
Mechanistic and Adsorption Studies of Relevance to Photocatalysts on Titanium Grafted Mesoporous Silicalites
Ti-SBA-15 and Ti-MCM-41 were synthesized and evaluated as possible photocatalysts for the reduction of CO2, and for the photo-Kolbe decomposition of acetic acid. UV-Raman was used to study the adsorption of carbon dioxide, water, formic acid, and acetic acid over Ti-MCM-41 by monitoring the UV enhanced resonance peak of the totally symmetric stretching band of the grafted Ti species at 1,085 cm(-1). Acetic and formic acid dissociate on Ti-SBA-15 and Ti-MCM-41 to form acetate and formate, respectively. The conjugate bases subsequently interact strongly with Ti sites. Water interacts with the Ti sites, while no change in the amplitude of the 1,085 cm(-1) band is observed in the presence of CO2. Photocatalysis experiments indicate that these mesoporous silicalites are active in the photo-Kolbe decomposition of acetic acid. CO2 is formed by reaction of a hole with the acetate carboxylate groups. The methyl radical co-products react with a surface proton and an electron to form methane. No products resulting from the dimerization of methyl radicals are observed, presumably because of the highly dispersed active sites.