화학공학소재연구정보센터
Macromolecular Research, Vol.19, No.12, 1233-1241, December, 2011
Synthesis, Phase Behavior, and Simulated In vitro Degradation of Novel HTPB-b-PEG Polyurethane Copolymers
E-mail:,
Two types of polyurethanes with alternating and random block architectures, hydroxyl-terminated liquid polybutadiene and poly(ethylene glycol) block copolymers (HTPB-alt-PEG and HTPB-co-PEG), were synthesized using a coupling reaction route between the hydroxyl groups and the isocyanate groups. The chemical and crystal structures were characterized using Fourier transform-infrared spectroscopy (FTIR) and X-ray diffraction, while phase behavior was examined using scanning electron microscopy (SEM) and differential scanning calorimetry. The biodegradation in a simulated human body fluid was investigated through mass loss, SEM, and FTIR. The experimental results indicated that all of the polyurethane samples bore the microphase separation structure, and the separation degree depended on the sequence structure and molecular weight (MW) of PEG and further affected their in vitro degradation. The driving force was related to the restricted movement of the molecular segments, the crystallization of the soft/hard phases, and/or the hydrogen bonding interactions between the hard segments. The surface morphological change of the degraded samples further demonstrated that the degradation became serious as the PEG MW increased and that the random block copolymers decomposed more easily than the alternating copolymers. The block polymer materials are expected to be incorporated into specific applications in related biomedical fields.
  1. Wiggins MJ, MacEwan M, Anderson JM, Hiltner A, J. Biomed. Mater. Res. A., 68, 668 (2004)
  2. Jiang GC, Tuo XL, Wang DR, Liu JP, React.Funct. Polym., 70, 175 (2010)
  3. Wang ZG, Yu LQ, Ding MM, Tan H, Li JH, Fu Q, Polym. Chem., 2, 601 (2011)
  4. Furukawa M, Kojio K, Kugumiya S, Uchiba Y, Mitsui Y, Macromol. Symp., 267, 9 (2008)
  5. Madkour TM, Azzam RA, J. Polym. Sci. A: Polym. Chem., 40(14), 2526 (2002)
  6. Covolan VL, Ponzio RD, Chiellini F, Fernandes EG, Solaro R, Chiellini E, Macromol. Symp., 218, 273 (2004)
  7. Lamba NMK, Woodhouse KA, Cooper SL, Polyurethanes in Biomedical Applications, CRC Press, New York (1998)
  8. Jin ZL, Liu J, Yang JG, Zhang JA, Wu QY, Wu MY, Liu NN, China Adhesives., 18, 61 (2009)
  9. Kang PP, Song WS, Han BB, Liu CY, Zheng YL, New Chem. Mater., 36, 4 (2008)
  10. Adams ML, Lavasanifar A, Kwon GS, J. Pharm., 92, 1343 (2003)
  11. Gisselfalt K, Helgee B, Macromol. Mater. Eng., 288, 265 (2003)
  12. Koberstein JT, Stein RS, Polym. Eng. Sci., 24, 293 (1984)
  13. Michaud P, Camberlin Y, Mai C, Polym. Eng. Sci., 28, 775 (1988)
  14. Li C, Goodman SL, Albrecht RM, Cooper SL, Macromolecules., 21, 2367 (1988)
  15. Ryan AJ, Willkomm WR, Bergstrom TB, Macosko CW, Koberstein JT, Yu CC, Russell TP, Macromolecules., 24, 2883 (1991)
  16. Chu B, Gao T, Li YJ, Wang J, Desper CR, Byrne CA, Macromolecules., 25, 5724 (1992)
  17. Pilch-Pitera B, Krol P, Pikus S, J. Appl. Polym. Sci., 110(5), 3292 (2008)
  18. Tsonos C, Apekis L, Viras K, Stepanenko L, Karabanova L, Sergeeva L, J. Macromol. Sci. Phys., B39, 155 (2000)
  19. Heintz AM, Duffy DJ, Nelson CM, Hua Y, Hsu SL, Suen W, Paul CW, Macromolecules, 38(22), 9192 (2005)
  20. Kornfield JA, Spiess HW, Nefiger H, Hayen H, Eisenbach CD, Macromolecules., 24, 4787 (1991)
  21. Lu J, Ma SL, Sun JY, Xia CC, Liu C, Wang ZY, Zhao XN, Gao FB, Gong Q, Song B, Shuai XT, Ai H, Gu ZW, Biomaterials., 30, 2919 (2009)
  22. Guan J, Fujimoto KL, Sacks MS, Wagner WR, Biomaterials., 26, 3961 (2005)
  23. Loh XJ, Tan KK, Li X, Li J, Biomaterials., 27, 1841 (2006)
  24. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM, J. Pharm. Sci., 97, 2892 (2008)
  25. Hevus I, Kohut A, Voronov A, Macromolecules, 43(18), 7488 (2010)
  26. Joseph LA, Israel OK, Edet EJ, Dent. Res. J., 6, 7 (2009)
  27. Lee HS, Hsu SL, Macromolecules., 22, 1100 (1989)
  28. Hood MA, Wang BB, Sands JM, La Scala JJ, Beyer FL, Li CY, Polymer, 51(10), 2191 (2010)
  29. Wang HL, Zhang Y, Tian M, Zhai LF, Wei Z, Shi TJ, J. Appl. Polym. Sci., 110(6), 3985 (2008)
  30. Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW, Polymer, 48(22), 6656 (2007)
  31. Luo YL, Zhang CH, Xu F, Chen YS, Fan LH, Wei QB, J. Mater. Sci., 45(7), 1866 (2010)
  32. Xu D, Wu K, Zhang QH, Hu HY, Xi K, Chen QM, Yu XH, Chen JN, Jia XD, Polymer, 51(9), 1926 (2010)
  33. Luo YL, Nan YF, Xu F, Chen YS, Di HW, Polym.Adv. Technol., 22, 802 (2011)
  34. Ghosh S, Biomacromolecules, 5(4), 1602 (2004)
  35. Luo YL, Wang SH, Li ZQ, J. Mater. Sci., 43(1), 174 (2008)
  36. Chen X, Ma T, Zhang H, Chen R, Appl. Mech. Mater., 29-32, 675 (2010)
  37. Lin TL, Yu TL, Liu WJ, Tsai YM, Polym. J., 32, 120 (1999)
  38. Rueda L, D'Arlas BF, Tercjak A, Ribes A, Mondragon I, Eceiza A, Eur. Polym. J., 45, 2096 (2009)
  39. Pukanszky B, Bagdi K, Tovolgyi Z, Varga J, Botz L, Hudak S, Doczi T, Pukanszky B, Eur. Polym. J., 44, 2431 (2008)
  40. D'Arlas BF, Rueda L, De la Caba K, Mondragon I, Eceiza A, Polym. Eng. Sci., 48(3), 519 (2008)
  41. Cao Q, Study on Synthesis, Structure and Properties of Polybutadiene/Liquefication Modified MDI-Based Polyurethane Elastomer, Master’s Thesis, Xiangtan University, Xiangtan (2002)
  42. Ellades T, Ellades G, Silikas N, Watts DC, J. Oral.Rehabil., 32, 72 (2004)
  43. Tang Z, Maroto-Valer MM, Andresen JM, Miller JW, Listemann ML, McDaniel PL, Morita DK, Furlan WR, Polymer, 43(24), 6471 (2002)