화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.409, No.1, 7-13, 2011
Blockade of lysophosphatidic acid receptors LPAR1/3 ameliorates lung fibrosis induced by irradiation
Lung fibrosis is a common and serious complication of radiation therapy for lung cancer, for which there are no efficient treatments. Emerging evidence indicates that lysophosphatidic acid (LPA) and its receptors (LPARs) are involved in the pathogenesis of fibrosis. Here, we reported that thoracic radiation with 16 Gy in mice induced development of radiation lung fibrosis (RLF) accompanied by obvious increases in LPA release and LPAR1 and LPAR3 (LPAR1/3) transcripts. RLF was significantly alleviated in mice treated with the dual LPAR1/3 antagonist, VPC12249. VPC12249 administration effectively prolonged animal survival, restored lung structure, inhibited fibroblast accumulation and reduced collagen deposition. Moreover, profibrotic cytokines in radiation-challenged lungs obviously decreased following administration of VPC12249, including transforming growth factor 131 (TGF beta 1) and connective tissue growth factor (CTGF). In vitro, LPA induced both fibroblast proliferation and CTGF expression in a dose-dependent manner, and both were suppressed by blockade of LPAR1/3. The pro-proliferative activity of LPA on fibroblasts was inhibited by siRNA directed against CTCF. Together, our data suggest that the LPA-LPAR1/3 signaling system is involved in the development of RLF through promoting fibroblast proliferation in a CTGF-dependent manner. The LPA-LPAR1/3-CTGF pathway may be a potential target for RLF therapy. (C) 2011 Elsevier Inc. All rights reserved.