Biochemical and Biophysical Research Communications, Vol.405, No.2, 308-313, 2011
Changes in cytosolic glucose level in ATP stimulated live astrocytes
Astrocytes which lie between brain capillaries and neuronal terminals are the primary site of glucose uptake and have a key role in coupling synaptic activity to glucose utilization in the central nervous system (CNS). We used a fluorescence resonance energy transfer (FRET) based approach to monitor cytosolic glucose in astrocytes. We determined the effect of increasing extracellular glucose concentrations on FRET ratio as a measure of increased cytosolic glucose in astrocytes. By briefly raising extracellular glucose concentration, astrocytes responded promptly by increased cytosolic glucose levels, which was manifested by decreased time-dependent FRET ratio. The FRET ratio fall-time recorded at low extracellular D-glucose concentration change (from 0 to 0.5 mM) was 53 s, whereas 17s was recorded by raising extracellular concentration of D-glucose from 0 to 10 mM, which is likely due to facilitated D-glucose entry along the increased D-glucose gradient across the plasmalemma. The relationship between the extracellular glucose concentration and the FRET ratio change is limited to the maximal ratio change, where the D-glucose plasma membrane permeability is balanced by the cytosolic utilization. We measured the effect of extracellular ATP, an important extracellular messenger for astrocyte-to-astrocyte communication, on intracellular glucose concentration. The results show that stimulation of astrocytes with ATP (1 mM) decreases cytosolic glucose concentration with a time constant of similar to 145 s. The mechanism of this change is discussed. (C) 2011 Elsevier Inc. All rights reserved.