Automatica, Vol.47, No.6, 1183-1192, 2011
Synaptic plasticity based model for epileptic seizures
In this paper, a new dynamic model describing the epileptic seizure initiation through transition from interictal to ictal state in a brain predisposed to epilepsy is suggested. The model follows Freeman's approach where the brain is viewed as a network of interconnected oscillators. The proposed nonlinear model is experimentally motivated and relies on changes in synaptic strength in response to excitatory spikes. This model exhibits a threshold beyond which a bifurcation toward a short-term plasticity state occurs leading to seizure onset. A resulting explanatory assumption is that when considering epilepsy, brain regions are characterized by abnormally low thresholds toward short-term synaptic plasticity. It is shown by simulation that the proposed model enables some experimentally observed qualitative features to be reproduced. Moreover, a preliminary discussion on the impact of the underlying assumptions on the fundamental issue of seizure control is proposed through an EEG based feedback control scheme. (C) 2011 Elsevier Ltd. All rights reserved.