Applied Microbiology and Biotechnology, Vol.91, No.4, 967-976, 2011
Enhanced production of GDP-l-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli
Biosynthesis of guanosine 5'-diphosphate-l-fucose (GDP-l-fucose) requires NADPH as a reducing cofactor. In this study, endogenous NADPH regenerating enzymes such as glucose-6-phosphate dehydrogenase (G6PDH), isocitrate dehydrogenase (Icd), and NADP(+)-dependent malate dehydrogenase (MaeB) were overexpressed to increase GDP-l-fucose production in recombinant Escherichia coli. The effects of overexpression of each NADPH regenerating enzyme on GDP-l-fucose production were investigated in a series of batch and fed-batch fermentations. Batch fermentations showed that overexpression of G6PDH was the most effective for GDP-l-fucose production. However, GDP-l-fucose production was not enhanced by overexpression of G6PDH in the glucose-limited fed-batch fermentation. Hence, a glucose feeding strategy was optimized to enhance GDP-l-fucose production. Fed-batch fermentation with a pH-stat feeding mode for sufficient supply of glucose significantly enhanced GDP-l-fucose production compared with glucose-limited fed-batch fermentation. A maximum GDP-l-fucose concentration of 235.2 +/- 3.3 mg l(-1), corresponding to a 21% enhancement in the GDP-l-fucose production compared with the control strain overexpressing GDP-l-fucose biosynthetic enzymes only, was achieved in the pH-stat fed-batch fermentation of the recombinant E. coli overexpressing G6PDH. It was concluded that sufficient glucose supply and efficient NADPH regeneration are crucial for NADPH-dependent GDP-l-fucose production in recombinant E. coli.
Keywords:Recombinant Escherichia coli;GDP-L-fucose;NADPH;Glucose 6-phosphate dehydrogenase;pH-stat fed-batch fermentation