화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.5, 402-408, September, 2011
유연한 점토-폴리(비닐 알코올) 하이브리드 필름의 특성 연구: 열적·광학적 성질, 모폴로지, 및 가스 투과성
Characterizations of Flexible Clay-PVA Hybrid Films: Thermo-optical Properties, Morphology, and Gas Permeability
E-mail:
초록
Na+-사포나이트(saponite, SPT) 필름의 유연성을 향상시키기 위해 수용성 고분자인 폴리(비닐 알코올)(poly(vinyl alcohol); PVA)을 다양한 함량(0∼10 wt%)으로 사용하여 용액 삽입방법을 통해 SPT 하이브리드 필름을 제조하였다. 본 논문에서는 SPT 하이브리드 필름의 열적·광학적 성질, 모폴로지, 및 가스 투과성 등을 조사하였다. PVA 농도에 따른 SPT 하이브리드 필름의 성질들은 X-선 회절도(XRD), 전계방사형 주사전자현미경(FE-SEM), 시차주사 열량계(DSC), 열중량 분석기(TGA), 열기계 분석기 (TMA), 자외선-가시광선(UV-vis.) 흡광도기, 및 산소투과(O2TR) 측정기 등을 통해 조사하였다. SPT 하이브리드 필름의 성질들은 PVA의 무게% 농도에 따라 많은 영향을 받았으며, 적은 양의 PVA도 SPT 하이브리드 필름의 유연성을 증가시키기에 충분하였다.
To improve Na+-saponite(SPT) film flexibility, we prepared SPT hybrid clay films with various poly(vinyl alcohol) (PVA) concentrations(0~10 wt%) using the solution intercalation method. In this study, we investigated the thermo-optical properties, morphology, and gas permeability of the SPT hybrid films. We also examined the relationship between the film properties and PVA content using wide angle X-ray diffraction measurements(XRD), field emission scanning electron microscopy(FESEM), differential scanning calorimetry(DSC), thermogravimetric analysis(TGA), thermomechanical analysis(TMA), ultraviolet.visible(UV-vis) spectroscopy, and oxygen transmission rate(O2TR) testing. The properties of the clay hybrid films were strongly affected by PVA filler content. The presence of a small amount of PVA was sufficient to improve the flexibility of SPT hybrid films.
  1. Giannelis EP, Adv. Mater., 8(1), 29 (1996)
  2. Strawhecker KE, Manias E, Chem. Mater., 2, 2943 (2000)
  3. Cendoya I, Lopez D, Alegria A, Mijangos C, J. Polym. Sci. B: Polym. Phys., 39(17), 1968 (2001)
  4. Suzuki F, Nakane K, Piao JS, J. Mater. Sci., 31(5), 1335 (1996)
  5. Legaly G, Smectitic Clays as Ionic Macromolecules, Elsevier, London (1986)
  6. LeBaron PC, Wang Z, Thomas JP, Appl. Clay Sci., 15, 11 (1999)
  7. Kojima Y, Usuki A, Kawasumi M, Okada A, J. Mater. Res., 8, 1185 (1993)
  8. Messersmith PB, Giannelis EP, Chem. Mater., 5, 1064 (1993)
  9. Yano K, Usuki A, Karauchi T, Kamigaito O, J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993)
  10. Chang JH, Jang TG, Ihn KJ, Lee WK, Sur GS, J. Appl. Polym. Sci., 90(12), 3208 (2003)
  11. Gilman JW, Appl. Clay Sci., 15, 31 (1999)
  12. Ham SK, Jung MH, Chang JH, Polym.(Korea), 30(4), 298 (2006)
  13. Huang RY, Rhim JW, Polym. Int., 30, 129 (1993)
  14. Levine M, Iikka G, Weis P, J. Polym. Sci. Part B: Polym. Chem., 2, 915 (1964)
  15. Chiang W, Min C, J. Appl. Polym. Sci., 30, 4045 (1985)
  16. Wen J, Vasudevan VJ, Wilkes GL, J. Sol-Gel Sci. Technol., 5, 115 (1995)
  17. Nakane K, Yamashita T, Iwakura K, Suzuki F, J. Appl. Polym. Sci., 74(1), 133 (1999)
  18. Chuang WY, Young TH, Chiu WY, Lin CY, Polymer, 41(15), 5633 (2000)
  19. Sakurada I, Dekker M, Poly(vinyl alcohol) fibers, Marcel Dekker, New York (1985)
  20. Jang JS, Lee DK, Polymer, 45(5), 1599 (2004)
  21. Cendoya I, Lopez D, Alegria A, Mijangos C, J. Polym. Sci. B: Polym. Phys., 39(17), 1968 (2001)
  22. Nakane K, Yamashita T, Iwakura K, Suzuki F, J. Appl. Polym. Sci., 74(1), 133 (1999)
  23. Suzuki F, Nakane K, Piao JS, J. Mater. Sci., 31(5), 1335 (1996)
  24. Yeun JH, Bang GS, Park BJ, Ham SK, Chang JH, J. Appl. Polym. Sci., 101, 591 (1999)
  25. Usuki A, Koiwai A, Kojima Y, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Appl. Polym. Sci., 55(1), 119 (1995)
  26. Legaly G, Appl. Clay Sci., 15, 1 (1999)
  27. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1179 (1993)
  28. Triantafyllidis KS, LeBaron PC, Park I, Pinnavaia TJ, Chem. Mater., 18, 4393 (2006)
  29. Gilman JW, Jackson CL, Morgan AB, Harris R Jr., Chem. Mater., 12, 1866 (2000)
  30. Akelah A, Kelly P, Qutubuddin S, Moet A, Clay Miner., 29, 169 (1994)
  31. Chaiko DJ, Chem. Mater., 15, 1105 (2003)
  32. Haraguchi K, Ebato M, Takehisa T, Adv. Mater., 18(17), 2250 (2006)
  33. Vendamme R, Onoue SY, Nakao A, Kunitake T, Nature Mater., 5, 494 (2006)
  34. Ebina T, Mizukami F, Japanese Patent 3,855,003 (2006)
  35. Neilson LE, J. Macromol. Sci., A1, 929 (1967)
  36. Ebina T, Mizukami F, Adv. Mater., 19(18), 2450 (2007)
  37. Nam HJ, Ishii R, Ebina T, Mizukami F, Mater. Lett., 63, 57 (2009)
  38. Tetsuka H, Ebina T, Tsunoda T, Nanjo H, Mizukami F, Surface & Coatings Technology., 202, 2955 (2008)
  39. Tetsuka H, Ebina T, Tsunoda T, Nanjo H, Mizukami F, Jpn. J. Appl. Phys., 47, 1894 (2008)
  40. Dupont BS, Bilow N, US Pat. 4,592,925 (1986)
  41. Landis AL, Naselow AB, US Pat. 4,645,824 (1987)
  42. Higashi K, Noda Y, Eur. Pat. 240249 (1986)
  43. Matsuura T, Ando S, Sasaki S, Yamamoto F, Electron Lett., 29, 2107 (1993)
  44. Nam HJ, Ishii R, Ebina T, Mizukami F, Mater. Lett., 63, 57 (2009)
  45. Suh JH, Shin JW, Kim HK, Kim HS, Kim YW, Kang HJ, Polymer., 34, 564 (2010)
  46. Zhang W, Yanga X, Li C, Lianga M, Lu C, Deng Y, Carbohydr. Polym., 83, 261 (2011)
  47. Lu J, Wang T, Drzal LT, Composites: Part A., 39, 745 (2008)
  48. Jarus D, Hiltner A, Baer E, Polymer, 43(8), 2401 (2002)
  49. Joly C, Smaihi M, Porcar L, Noble RD, Chem. Mater., 11, 2331 (1999)
  50. Ebeling T, Norek S, Hasan A, Hiltner A, Baer E, J. Appl. Polym. Sci., 71(9), 1461 (1999)
  51. Weinkauf DH, Paul DR, in Effect of Structural Order on Barrier Properties, Koros WJ, Editor, American Chemical Society, Washington, DC (1990)