화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.29, No.1, 120-124, January, 2012
Optical properties of TiO2 nanorods modified by electron-donating stabilizers
E-mail:
A significant change in the UV-vis absorption of TiO2 nanorods (NRs) was induced by changing electrondonating stabilizer from oleic acid (OA) to acrylic acid (AcA). When TiO2 NRs with an average size of 2.5 nm in diameter and 30 nm in length were dispersed in an aqueous AcA solution, a red shift in the optical absorption (0.73 eV at the band edge and 0.55 eV at the onset) was observed. The red shift was attributed to an increase in the electron density inside the TiO2 NRs. The applicability of the AcA-exchanged TiO2 NRs for the photocatalyst as well as a UV sensor was evaluated. The AcA-exchanged TiO2 NRs showed significant photocatalytic activity on the degradation of toluene in the visible light region. Moreover, thin film of the AcA-exchanged TiO2 NRs on a quartz plate was tested as a UV sensor and it exhibited a good response to a wide range of the UV light.
  1. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  2. Niederberger M, Garnweitner G, Krumeich F, Nesper R, Clfen H, Antonietti M, Chem. Mater., 16, 1202 (2004)
  3. Diaz D, Robles J, Ni T, Castillo-Blum SE, Nagesha D, Alvarez-Fregoso OJ, Kotov NA, J. Phys. Chem. B, 103(45), 9859 (1999)
  4. Dubois F, Mahler B, Dubertret B, Doris E, Mioskowski C, J. Am. Chem. Soc., 129(3), 482 (2007)
  5. Kalyuzhny G, Murray RW, Am. Chem. Soc., 109, 7012 (2005)
  6. Wang MF, Oh JK, Dykstra TE, Lou XD, Scholes GD, Winnik MA, Macromolecules, 39(10), 3664 (2006)
  7. Munro AM, Jen-La Plante I, Ng MS, Ginger DS, J. Phys. Chem. C., 111, 6220 (2007)
  8. Schmelz O, Mews A, Basche T, Herrmann A, Mullen K, Langmuir, 17(9), 2861 (2001)
  9. Ji XH, Copenhaver D, Sichmeller C, Peng XG, J. Am. Chem. Soc., 130(17), 5726 (2008)
  10. Petruska MA, Bartko AP, Klimov VI, J. Am. Chem. Soc., 126(3), 714 (2004)
  11. Jang E, Jun S, Chung YS, Pu LS, J. Phys. Chem. B, 108(15), 4597 (2004)
  12. Vo DQ, Kim EJ, Kim S, J. Colloid Interface Sci., 337(1), 75 (2009)
  13. Cozzoli PD, Kornowski A, Weller H, J. Am. Chem. Soc., 125(47), 14539 (2003)
  14. Ghosh HN, Adhikari S, Langmuir, 17(13), 4129 (2001)
  15. Sasaki T, Watanabe M, J. Phys. Chem. B, 101(49), 10159 (1997)
  16. Sasaki T, Supramol. Sci., 5, 367 (1998)
  17. Bavykin DV, Gordeev SN, Moskalenko AV, Lapkin AA, Walsh FC, J. Phys. Chem. B, 109(18), 8565 (2005)
  18. Wu N, Fu L, Su M, Aslam M, Wong KC, Dravid VP, Nano Lett., 4, 383 (2004)
  19. Beranek R, Kisch H, Photochem. Photobiol. Sci., 7, 40 (2008)
  20. Saha NC, Tompkins HG, J. Appl. Phys., 72, 3072 (1992)
  21. Yin Y, Alivisatos AP, Nature., 437, 664 (2005)
  22. Hodes G, Adv. Mater., 19(5), 639 (2007)
  23. Braginsky L, Shklover V, Eur. Phys. J. D., 9, 627 (1999)
  24. Tsai MC, Tsai TL, Lin CT, Chung RJ, Sheu HS, Chiu HT, Lee CY, J. Phys. Chem. C., 112, 2697 (2008)
  25. Kim SB, Hong SC, Appl. Catal. B: Environ., 35(4), 305 (2002)
  26. Khan R, Kim TJ, J. Hazard. Mater., 163(2-3), 1179 (2009)
  27. Irokawa Y, Morikawa T, Aoki K, Kosaka S, Ohwaki T, Taga Y, Phys. Chem. Chem. Phys., 8, 1116 (2006)
  28. Bosc F, Edwards D, Keller N, Keller V, Ayral A, Thin Solid Films, 495(1-2), 272 (2006)
  29. Kar JP, Das SN, Choi JH, Lee YA, Lee TY, Myoung JM, J. Cryst. Growth, 311(12), 3305 (2009)
  30. Zheng XG, Li QS, Cent. J. Phys. A., 81, 1281 (2005)
  31. Hullavarad SS, Hullavarad NV, Karulkar PC, Luykx A, Valdivia P, Nanoscale Res. Lett., 2, 161 (2007)