화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.28, No.12, 2262-2274, December, 2011
Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue
E-mail:
Slow pyrolysis studies of palm kernel cake (PKC) and cassava pulp residue (CPR) were conducted in a fixed-bed reactor. Maximum liquid yield (54.3 wt%) was obtained from PKC pyrolysis at 700 ℃, heating rate of 20 ℃/min, N2 gas flow rate of 200 cm3/min and particle size of 2.03 mm. Fuel properties of bi-oils were in following ranges: density, 1.01-1.16 g/cm3; pH, 2.8-5.6; flash point, 74-110 ℃ and heating value, 15MJ/kg for CPR oil and 40 MJ/kg for PKC oil. PKC oil gave main contents of n-C8-C18 carboxylic acids, phenols, and esters, whereas CPR oil gave the highest amount of methanol soluble fraction consisting of polar and non-volatile compounds. On gas compositions, CPR pyrolysis gave the highest yield of syngas produced, while PKC pyrolysis offered the highest content of CO2. Pyrolysis chars possessed high calorific values in range from 29-35MJ/kg with PKC char showing a characteristic of reasonably high porosity material.
  1. Czernik S, Bridgwater AV, Energy Fuels, 18(2), 590 (2004)
  2. Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548 (2009)
  3. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73 (2010)
  4. Bridgwater AV, Chem. Eng. J., 91, 81 (2003)
  5. Yaman S, Energy Conv. Manag., 45(5), 651 (2004)
  6. Dynamotive Energy Systems Corporation (2004), What is bio-oil [On-line], http://www.dynamotive.com/biooil/whatisbiooil.html.
  7. Choi HS, Choi YS, Park HC, Korean J. Chem. Eng., 27(4), 1164 (2010)
  8. Rodjeen SN, Mekasut LS, Kuchontara PP, Piumsomboon PP, Korean J. Chem. Eng., 23(2), 216 (2006)
  9. Mohan D, Pittman CU, Steele PH, Energy Fuels, 20(3), 848 (2006)
  10. Nugranad N, Pyrolysis of biomass, Ph.D. Dissertation, University of Leeds, Leeds (1997)
  11. Onay O, Kockar OM, Energy., 28, 2417 (2003)
  12. Branca C, Giudicianni P, Di Blasi C, Ind. Eng. Chem. Res., 42(14), 3190 (2003)
  13. Yang H, Yan R, Chen H, Lee DH, Zheng C, Fuel., 86, 1781 (2007)
  14. Office of Agricultural Economics (2007), Cassava [On-line], www.oae.go.th.
  15. Integrated cassava project (2007), Cassava starch production [Online], http://www. cassavabiz.org.
  16. Wattanachaisaereekul S, Animal feed from fermented cassava waste, M.S. Thesis, Kasetsart University, Thailand (2001)
  17. Office of Agricultural Economics (2007), Palm oil [On-line], www.oae.go.th.
  18. Antal MJ, in Advances in solar energy, Boer KW, Duffie JA Eds., American Solar Energy Society, Boulder, CO (1983)
  19. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P, Fuel., 82, 1949 (2003)
  20. Demirba A, J. Anal. Appl. Pyrolysis., 76, 285 (2006)
  21. Putun AE, Kockar OM, Yorgun S, Gercel HF, Andresen J, Snape CE, Putun E, Fuel Process. Technol., 46(1), 49 (1996)
  22. Putun AE, Ozcan A, Gercel HF, Putun E, Fuel., 80, 1371 (2001)
  23. Yorgun S, Sensoz S, Kockar OM, J. Anal. Appl. Pyrolysis., 60, 1 (2001)
  24. Onay O, Kockar OM, Biomass Bioenerg., 26(3), 289 (2004)
  25. Ozbay N, Putun AE, Uzun BB, Putun E, Renew. Energy., 24, 615 (2001)
  26. Guo J, Lua AC, Biomass Bioenerg., 20(3), 223 (2001)
  27. Putun AE, Ferdi Gercel H, Kockar OM, Ege O, Snape CE, Putun E, Fuel., 75, 1307 (1996)
  28. Tsai WT, Lee MK, Chang YM, J. Anal. Appl. Pyrolysis., 76, 230 (2006)
  29. Karaosmanoglu F, Tetik E, Gollu E, Fuel Process. Technol., 59(1), 1 (1999)
  30. Islam MN, Zailani R, Ani FN, Renew. Energy, 17(1), 73 (1999)
  31. Zhang Q, Chang J, Wang TJ, Xu Y, Energy Conv. Manag., 48(1), 87 (2007)
  32. Dynamotive Energy Systems Corporation (2009), The evaluation of energy: alternative fuels from cellulose for a better world, [Online], www.dynamotive.com.
  33. Oasmaa A, Czernik S, Energy Fuels, 13(4), 914 (1999)
  34. Xu JM, Jiang JC, Sun YJ, Lu YJ, Biomass Bioenerg., 32(11), 1056 (2008)
  35. Ac kgoz C, Onay O, Kockar OM, J. Anal. Appl. Pyrolysis., 71, 417 (2004)
  36. Putun AE, Ozcan A, Putun E, J. Anal. Appl. Pyrolysis., 52, 3 (1999)
  37. Kossiakoff A, Rice FO, J. Am. Chem. Soc., 65, 590 (1943)
  38. Tsai WT, Mi HH, Chang YM, Yang SY, Chang JH, Bioresour. Technol., 98(5), 1133 (2007)
  39. Putun E, Ate F, Putun AE, Fuel., 87, 815 (2008)
  40. Demirbas A, Energy Conv. Manag., 41(6), 633 (2000)
  41. Lemeune S (2005), Le bios [Online], http://www.geocities.com/Paris/LeftBank/5810/bois.html.
  42. Wang D, Czernik S, Montane D, Mann M, Chornet E, Ind. Eng. Chem. Res., 36(5), 1507 (1997)
  43. Srinorakutara T, Kaewvimol L, Saengow L, J. Sci. Res. Chula. Univ., 31, 77 (2006)
  44. Biomass Technology Group (2003), Bio-oil Applications [Online], http://www.btgworld.com/technologies/bio-oil-applications.html.
  45. Thomas S, Wornat MJ, Fuel., 87, 768 (2008)
  46. Chum HL, Kreibich RE, US Patent, 5,091,499 (1992)
  47. Uzun BB, Putun AE, Putun E, J. Anal. Appl. Pyrolysis., 79, 147 (2007)
  48. Jorjani E, Hower JC, Chelgani SC, Shirazi MA, Mesroghli S, Fuel., 87, 707 (2008)
  49. Bansal RC, Donnet JB, Stoeckli F, Active carbon, Marcel Dekker, New York (1988)
  50. Li SG, Xu SP, Liu SQ, Yang C, Lu QH, Fuel Process. Technol., 85(8-10), 1201 (2004)
  51. Zanzi R, Sjostrom K, Bjornbom E, Biomass Bioenerg., 23(5), 357 (2002)
  52. Dai XW, Wu CZ, Li HB, Chen Y, Energy Fuels, 14(3), 552 (2000)
  53. Panigrahi S, Chaudhari ST, Bakhshi NN, Dalai AK, Energy Fuels, 16(6), 1392 (2002)
  54. Yang HP, Yan R, Chen HP, Lee DH, Liang DT, Zheng CG, Fuel Process. Technol., 87(10), 935 (2006)