Macromolecular Research, Vol.19, No.9, 928-942, September, 2011
Compositional Effect on the Properties of Sulfonated and Nonsulfonated Polymer Blend Membranes for Direct Methanol Fuel Cell
E-mail:
Various morphologies of blend membranes were prepared by changing drying condition and composition and their effect on the proton conductivity and the methanol crossover were discussed for direct methanol fuel cell. To obtain high proton conductivity but low fuel loss, highly sulfonated poly(arylene ether sulfone) (IEC=1.9 meq/g for sPAES55, synthesized with 55 mol% sulfonated monomer) was blended with nonsulfonated poly(ether sulfone) (IEC=0 meq/g for RH2000®, provided from Solvay) in solution blending manner. The blend ratio of sPAES55 and RH2000 was varied as 5 to 5, 6 to 4, 7 to 3, and 8 to 2 and three different temperatures (-42, -20, and 80℃ ) were applied during the drying step to control the rate of phase separation. The effect of the blend ratio on the morphology, proton conductivity, and methanol permeability of the blend membrane was analyzed in combination with the drying process and finally the most desirable blend membrane for direct methanol fuel cell was proposed.
- Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE, Chem. Rev., 104(10), 4587 (2004)
- Costamagna P, Srinivasan S, J. Power Sources, 102(1-2), 242 (2001)
- Mauritz KA, Moore RB, Chem. Rev., 104(10), 4535 (2004)
- Ren XM, Springer TE, Zawodzinski TA, Gottesfeld S, J. Electrochem. Soc., 147(2), 466 (2000)
- Kim YS, Einsla B, Sankir M, Harrison W, Pivovar BS, Polymer, 47(11), 4026 (2006)
- Choi J, Kim DH, Kim HK, Shin C, Kim SC, J. Membr. Sci., 310(1-2), 384 (2008)
- Manea C, Mulder M, J. Membr. Sci., 206(1-2), 443 (2002)
- Kim IT, Choi J, Kim SC, J. Membr. Sci., 300(1-2), 28 (2007)
- Cho KY, Eom JY, Jung HY, Choi NS, Lee YM, Park JK, Choi JH, Park KW, Sung YE, Electrochim. Acta, 50(2-3), 583 (2004)
- Wang S, Wang JL, Ji Q, Shultz AR, Ward TC, McGrath JE, J. Polym. Sci. B: Polym. Phys., 38(18), 2409 (2000)
- Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB, J. Power Sources, 103(1), 1 (2001)
- So SY, Hong YT, Kim SC, Lee SY, J. Membr. Sci., 346(1), 131 (2010)
- Kerres J, Ullrich A, Meier F, Haring T, Solid State Ion., 125(1-4), 243 (1999)
- Zhang W, Dai G, Kerres J, Acta Polym., 5, 608 (1998)
- Kwon YH, Kim SC, Lee SY, Macromolecules, 42(14), 5244 (2009)
- Kim DH, Choi J, Hong YT, Kim SC, J. Membr. Sci., 299(1-2), 19 (2007)
- Kim DH, Kim SC, Macromol. Res., 16(5), 457 (2008)
- Sankir M, Bhanu VA, Harrison WL, Ghassemi H, Wiles KB, Glass TE, Brink AE, Brink MH, McGrath JE, J. Appl. Polym. Sci., 100(6), 4595 (2006)
- Wang F, Hickner MA, Ji Q, Harrison W, Mecham JB, Zawodzinski T, McGrath JE, Macromol. Symp., 175, 387 (2001)
- Li YX, Wang F, Yang J, Liu D, Roy A, Case S, Lesko J, McGrath JE, Polymer, 47(11), 4210 (2006)
- RADEL® A. Polyethersulfone RADEL® R. Polyphenylsulfone Design Guide, Solvay Advanced Polymers, Alpharetta, 2004.
- Zhang ZC, Chalkova E, Fedkin M, Wang CM, Lvov SN, Komarneni S, Chung TCM, Macromolecules, 41(23), 9130 (2008)
- Won J, Park HH, Kim YJ, Choi SW, Ha HY, Oh IH, Kim HS, Kang YS, Ihn KJ, Macromolecules, 36(9), 3228 (2003)