화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.22, No.4, 348-352, August, 2011
Stilbene 발광 유도체를 가지는 Polyurethane을 기본으로 하는 고분자의 합성 및 특성
Syntheses and Characterization of Polyurethane Polymers with Versatile Stilbene Chromophores
E-mail:
초록
본 연구에서는 펜던트 타입의 고분자인 폴리우레탄에 스틸벤 유도체를 가진 다양한 발색단을 곁가지로 도입하고, 이를 연결하는 방식으로 분자를 디자인하고 합성하였다. 모노머 분자인 N,N-bis(2-hydroxyethyl)amino-4'-cyanostilbene, N,N-bis(2-hydroxyethyl) amino-4'-methoxy stilbene, N,N-bis(2-hydroxyethyl)amino-4'-acetylstilbene, N,N-bis (2-hydroxyethyl) amino stilbene은 Wittig 반응을 이용하여 합성하였고, N,N-bis(2-hydroxyethyl)amino-4'-nitrostilbene는 Knoevenagel 축합 반응을 이용하여 합성하였다. 합성된 물질의 흡수 및 형광 스펙트럼의 측정으로부터, 치환기로 전자 끌게 작용기를 도입한 경우 그 정도에 따라 스펙트럼이 장파장으로 이동하며, 반대로 전자 주게 작용기가 도입된 경우는 단파장 이동 하는 것을 확인 하였다. 반면, NO2가 치환된 경우 그 자체가 빛을 소멸시키는
In this research, we have synthesized new pendant-type polyurethane polymers by introducing various chromophores with stilbene derivatives in the side-chain of the polymer backbone. The Stilbene monomers, N,N-bis(2-hydroxyethyl) amino-4'-cyanostilbene, N,N-bis(2-hydroxyethyl)amino-4'-methoxy stilbene, N,N-bis(2-hydroxyethyl)amino-4'-acetylstilbene, and N,N-bis(2-hydroxyethyl) amino stilbene, were synthesized by Wittig reaction. Another stilbene monomer, N,N-bis(2-hydroxyethyl)amino-4'-nitrostilbene, was synthesized by Knoevenagel condensation. By the measurement of UV-Vis absorption and Photoluminescence (PL) spectrum, we found that introduction of the electron-withdrawing group as a substituent shifts both UV-Vis and PL spectra to longer wavelength, and the introduction of the electron-donating group results in blue-shift of the spectrum. In case of polymer with NO2 group as a substituent, PL is quenched.
  1. Bernius MT, Inbasekaran M, O'Brien J, Wu WS, Adv. Mater., 12(23), 1737 (2000)
  2. Zhang L, Di C, Yu G, Liu Y, J. Mater. Chem., 20, 7059 (2010)
  3. Lee TW, Chung Y, Kwon O, Park JJ, Adv. Funct. Mater., 17(3), 390 (2007)
  4. Park SH, Cho S, Lee JK, Lee K, Heeger AJ, Org. Electron., 10, 426 (2009)
  5. Kim JH, Heo J, Lee YY, Kim BH, Lee GD, Hong SS, Park SS, J. Korean Ind. Eng. Chem., 20(1), 46 (2009)
  6. Tsutsui T, Aminaka E, Hamada Y, Adachi C, Saito S, Proc. SPIE., 191, 180 (1993)
  7. Gustaffsson G, Cao Y, Tracy M, Klavetter F, Colaneri N, Heeger AJ, Nature., 375, 477 (1992)
  8. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB, Nature., 347, 539 (1990)
  9. Grem G, Leditzky G, Ullrich B, Leising G, Adv. Mater., 4, 32 (1992)
  10. Patel H, Patel S, J. Macromol. Sci. Chem., A21, 343 (1984)
  11. Yen T, Devar M, Rembaum A, J. Macromol. Sci. Chem., 4, 693 (1970)
  12. Lim H, Noh JY, Lee GH, Lee SE, Jeong H, Lee K, Cha M, Suh H, Ha CS, Thin Solid Films, 363(1-2), 152 (2000)
  13. Jin Y, Ju J, Kim J, Lee S, Kim JY, Park SH, Son SM, Jin SH, Lee K, Suh H, Macromolecules, 36(19), 6970 (2003)
  14. Jin Y, Kim K, Park SH, Song S, Kim J, Jung J, Lee K, Suh H, Macromolecules, 40(19), 6799 (2007)